Advertisement

Crystal structures and biological activity of homologated (N)-n-alkylammonium salts of 2-bromo-3-oxido-1,4-naphthoquinone

  • Dinkar Choudhari
  • Debamitra Chakravarty
  • Dipali N. Lande
  • Sana Parveen
  • Shridhar P. Gejji
  • Kisan M. Kodam
  • Sunita Salunke-GawaliEmail author
Original Research
  • 16 Downloads

Abstract

Homologated (N)-n-alkylammonium salts of 2-bromo-3-oxido-1,4-naphthoquinone (BS-1 to BS-8) have been synthesized and characterized from the single crystal X-ray diffraction experiments combined with density functional theory. The crystal structures revealed diverse noncovalent interactions such as hydrogen bonding, π∙∙∙π, Br∙∙∙π, and others. The measured antifungal activities of the BS-1 to BS-6 against fungal strains Saccharomyces cerevisiae and Candida albicans suggest them to be effective compared to standard drug amphotericin B. Antibacterial activity of BS-1 to BS-6 has been evaluated against Gram-positive and Gram-negative bacteria.

Keywords

Naphthoquinone Crystal structures Hydrogen bonding π∙∙∙π interactions Antibacterial, antifungal and antiproliferative activity 

Notes

Acknowledgements

SSG grateful to RGYI scheme of Department of Biotechnology, New Delhi, India for Ref. No. (BT/PR6565/GBD/27/456/2012). DC acknowledge to University Grants Commission (UGC), New Delhi, India, for meritorius fellowship. SPG acknowledges support from the Research Project (37(2)/14/11/2015-BRNS) from the Board of Research in Nuclear Sciences (BRNS), India. DNL is thankful to Savitribai Phule Pune University for the award of research fellowship through the University of Potential excellence scheme of UGC, New Delhi, India. SPG and DNL thank the Center for Development of Advanced Computing (CDAC), Pune for providing National Param Supercomputing Facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All the ethical guidelines have been adhered.

Supplementary material

11224_2019_1343_MOESM1_ESM.docx (5.3 mb)
ESM 1 Figures of FTIR, 1H and 13C NMR, DEPT NMR, UV-Visible spectra. Tables FT-IR data, chemical shifts from 1H, 13C NMR spectra, crystallography tables. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre and may be obtained on request quoting the deposition number CCDC 1504323 for BS-1, 1550877 for BS-2, 1504325 for BS-3, 1546317 for BS-4, 1504324 for BS-5, 1504326 for BS-6, 1504327 for BS-7 and 1504328 for BS-8, CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +441,223 336,033; E-mail address: deposit@ccdc.cam.ac.uk). (DOCX 5437 kb)

References

  1. 1.
    Watanabe N, Forman HJ (2003) Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells. Arch Biochem Biophys 411:145–157CrossRefGoogle Scholar
  2. 2.
    da Silva AJ, Buarque CD, Brito FV, Aurelian L, Macedo LF, Malkas LH, Hickey RJ, Lopes DVS, Noel F, Murakami YL, Silva NMV, Melo PA, Caruso RRB, Castro NG, Costa PRR (2002) Synthesis and preliminary pharmacological evaluation of new (±) 1,4-naphthoquinones structurally related to lapachol. Bioorg Med Chem 10:2731–2738CrossRefGoogle Scholar
  3. 3.
    Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones- their occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47–68CrossRefGoogle Scholar
  4. 4.
    Muller T, Johann L, Jannack B, Bruckner M, Lanfranchi DA, Bauer H, Sanchez C, Yardley V, Deregnaucourt C, Schrevel J, Lanzer M, Schirmer RH, Charvet ED (2011) Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones – a new strategy to combat malarial parasites. J Am Chem Soc 133:11557–11571CrossRefGoogle Scholar
  5. 5.
    Rane S, Ahmed K, Salunke-Gawali S, Zaware SB, Srinivas D, Gonnade R, Bhadbhade M (2008) Vitamin K3 family members - part II: single crystal X-ray structures, temperature-induced packing polymorphism, magneto-structural correlations and probable anti-oncogenic candidature. J Mol Struct 892:74–83CrossRefGoogle Scholar
  6. 6.
    Chang H-X, Chou TC, Savaraj N, Liu LF, Chiang Y, Cheng CC (1999) Design of antineoplastic agents based on the “2-phenylnaphthalene-type” structural pattern. 4. Synthesis and biological activity of 2-hloro-3-(substituted phenoxy)-1,4-naphthoquinones and related 5,8-dihydroxy-1,4-naphthoquinones. J Med Chem 42:405–408CrossRefGoogle Scholar
  7. 7.
    Kawiak A, Pankau JZ, Lojkowska E (2012) Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J Nat Prod 75:747–751CrossRefGoogle Scholar
  8. 8.
    Marceneiro S, Braga MEM, Dias AMA, de Sousa HC (2011) Measurement and correlation of 1,4-naphthoquinone and of plumbagin solubilities in supercritical carbon dioxide. J Chem Eng Data 56:4173–4182CrossRefGoogle Scholar
  9. 9.
    Hughes LM, Lanteri CA, ONeil MT, Johnson JD, Gribble GW, Trumpower BL (2011) Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. Mol Biochem Parasitol 177:12–19CrossRefGoogle Scholar
  10. 10.
    Murakami K, Haneda M, Iwata S, Yoshino M (2010) Effect of hydroxy substituent on the prooxidant action of naphthoquinone compounds. Toxicology 24:905–909Google Scholar
  11. 11.
    Ollinger K, Brunmark A (1991) Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes. J Biol Chem 266:21496–21503Google Scholar
  12. 12.
    Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH (2012) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 32:1131–1158CrossRefGoogle Scholar
  13. 13.
    Klaus V, Hartmann T, Gambini J, Graf P, Stahl W, Hartwig A, Klotz LO (2010) 1,4-naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch Biochem Biophys 496:93–100CrossRefGoogle Scholar
  14. 14.
    Meazza G, Dayan FE, Wedge DE (2003) Activity of quinones on Collectotrichum species. J Agric Food Chem 51:3824–3828CrossRefGoogle Scholar
  15. 15.
    Perez-Sacau E, Diaz-Penate RG, Estevez-Braun A, Ravelo AG, Garcia-Castellano JM, Pardo L, Campillo M (2007) Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human Promyelocytic leukemia HL-60 cell line. J Med Chem 50:696–706CrossRefGoogle Scholar
  16. 16.
    Choudhari D, Lande DN, Bagade A, Gejji SP, Chakravarty D, Kodam KM, Salunke-Gawali S (2017) Molecular structures and biological activities of (N)-n-alkylammonium 2-chloro-3-oxido-1,4-naphthoquinone salts. J Mol Struct 1145:309–320CrossRefGoogle Scholar
  17. 17.
    Perrin DD, Armarego WL, Perrin DR (1988) Purification of laboratory chemicals. Pergamon Press, London, p 260Google Scholar
  18. 18.
    Dar UA, Bhand S, Lande DN, Rao SS, Patil YP, Gejji SP, Nethaji M, Weyhermüller T, Salunke-Gawali S (2016) Molecular structures of 2-hydroxy-1, 4-naphthoqinone derivatives and their zinc (II) complexes: combining experiment and density functional theory. Polyhedron 113:61–72CrossRefGoogle Scholar
  19. 19.
    Bruker (2007) APEX2. Bruker AXS Inc., MadisonGoogle Scholar
  20. 20.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  21. 21.
    Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  22. 22.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRefGoogle Scholar
  23. 23.
    Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst D65:148–155Google Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato MLX, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.2. Gaussian Inc, WallingfordGoogle Scholar
  25. 25.
    Peverati R, Truhlar DG (2012) Exchange–correlation functional with good accuracy for both structural and energetic properties while depending only on the density and its gradient. J Chem Theory Comput 8:2310–2319CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Truhlar DG (2011) Applications and validations of the Minnesota density functionals. Chem Phys Lett 502:1–13CrossRefGoogle Scholar
  27. 27.
    Lande DN, Rao SS, Gejji S (2016) Deciphering noncovalent interactions accompanying 7, 7, 8, 8-tetracyanoquinodimethane encapsulation within biphene[n]arenes: nucleus-independent chemical shifts approach. Chem Phys Chem 17:2197–2209CrossRefGoogle Scholar
  28. 28.
    Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688CrossRefGoogle Scholar
  29. 29.
    Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117:12590–12600CrossRefGoogle Scholar
  30. 30.
    Yuan K, Guo YJ, Yang T, Dang JS, Zhao P, Li QZ, Zhao X (2014) Theoretical insights into the host–guest interactions between [6] cycloparaphenyleneacetylene and its anthracene-containing derivative and fullerene. J Phys Org Chem 27:772–782CrossRefGoogle Scholar
  31. 31.
    Dennington R, Keith T, Milliam J (2009) Gossview, version 5. Semichem Inc., ShawneeGoogle Scholar
  32. 32.
    Sarker S, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324CrossRefGoogle Scholar
  33. 33.
    Patil S, Athare S, Jagtap A, Kodam K, Gejji S, Malkhede D (2016) Encapsulation of rhodamine-6G within p-sulfonatocalix[n]arenes: NMR, photophysical behaviour and biological activities. RSC Adv 6:110206–110220CrossRefGoogle Scholar
  34. 34.
    Patil R, Bhand S, Konkimalla VB, Banerjee P, Ugale B, Chadar D, Kr Saha S, Praharaj PP, Nagaraja CM, Chakrovarty D, Salunke-Gawali S (2016) Molecular association of 2-(n-alkylamino)-1,4-naphthoquinone derivatives: electrochemical, DFT studies and antiproliferative activity against leukemia cell lines. J Mol Struct 1125:272–281CrossRefGoogle Scholar
  35. 35.
    Agarwal G, Lande DN, Chakrovarty D, Gejji SP, Gosavi-Mirkute P, Patil A, Salunke-Gawali S (2016) Bromine substituted aminonaphthoquinones: synthesis, characterization, DFT and metal ion binding studies†. RSC Adv 6:88010–88029CrossRefGoogle Scholar
  36. 36.
    Kathawate L, Gejji SP, Yeole SD, Verma PL, Puranik VG, Salunke-Gawali S (2015) The first naphthosemiquinone complex of K+ with vitamin K3 analog: experiment and density functional theory. J Mol Struct 1088:56–63CrossRefGoogle Scholar
  37. 37.
    Chaudhari D, Gejji SP, Lande DN, Chakravarty D, Salunke-Gawali S (2016) Polymorphism in chloro derivatives of 1, 4-naphthoquinone: experiment and density functional theoretic investigations. J Mol Struct 1120:281–293CrossRefGoogle Scholar
  38. 38.
    Sunita-Salunke S, Kathawate L, Shinde Y, Puranik VG (2012) Single crystal X-ray structure of lawsone anion: evidence for coordination of alkali metal ions and formation of naphthosemiquinone radical in basic media. J Mol Struct 1010:38–45CrossRefGoogle Scholar
  39. 39.
    Salunke-Gawali S, Pawar O, Nikalje M, Patil R, Weyhermüller T, Puranik VG, Konkimalla VB (2014) Synthesis, characterization and molecular structures of homologated analogs of 2-bromo-3-(n-alkylamino)-1,4-napthoquinone. J Mol Struct 1056–1057:97–103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySavitribai Phule Pune UniversityPuneIndia
  2. 2.Central Instrumentation Facility, Department of ChemistrySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations