Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2167–2180 | Cite as

Exploring the transfer of hydrogen atom from kaempferol-based compounds to hydroxyl radical at ground state using PCM-DFT approach

  • Khajadpai Thipyapong
  • Nuttawisit YasarawanEmail author
Original Research
  • 57 Downloads

Abstract

Thermodynamic and kinetic studies of the hydrogen atom transfer (HAT) from hydroxyl (OH) groups of four kaempferol-based compounds, namely kaempferol, morin, morin-5*-sulfonate and morin-7-O-sulfate to hydroxyl radical (·OH), have been carried out using density functional theory (DFT) methods at the CAM-B3LYP/6–311++G(d,p) level equipped with polarizable continuum model (PCM) of solvation. All HAT reactions in aqueous solution are exothermic and spontaneous. For most compounds, the most preferable OH group for HAT is situated at position C3 (O3-H3) on the pyrone ring. The reaction potential of such a reactive group is found to be highest in morin-7-O-sulfate. The rate constants for the HAT reactions at different OH groups of each compound have been determined based on the transition state theory. The presence of substituents leads to the variation in either the characteristic interactions at the reactive site or the charge distribution on transition-state geometries, hence significantly affecting the kinetics of HAT. The highest rate of HAT is resulted for the OH group at position C4* (O4*-H4*) on the phenyl ring (ring B) of morin-5*-sulfonate because a hydrogen bond between ·OH and the sulfonate group favors the formation of transition state. However, for most compounds under study, the HAT reaction at O3-H3 initiated by ·OH is highly favorable both thermodynamically and kinetically.

Keywords

Flavonoids Hydroxyl radical Hydrogen atom transfer DFT PCM 

Notes

Acknowledgements

We would like to thank Dr. Akapong Suwattanamala at Burapha University for his valuable advices.

Compliance with ethical standards

Conflict of interest

This statement is to declare that there are no known conflicts of interest associated with the manuscript entitled “Exploring the transfer of hydrogen atom from kaempferol-based compounds to hydroxyl radical at ground state using PCM/DFT approach” by Khajadpai Thipyapong and Nuttawisit Yasarawan. There has been no significant financial support for this work that could have influenced its outcome. We further confirm that there are no ethical issues to declare in this work.

Supplementary material

11224_2019_1331_MOESM1_ESM.docx (17.3 mb)
ESM 1 (DOCX 17682 kb)

References

  1. 1.
    Chen AY, Chen YC (2013). Food Chem 138:2099–2107CrossRefGoogle Scholar
  2. 2.
    Alkhamees A (2013) O. Br J Pharmacol Toxicol 4:10–17CrossRefGoogle Scholar
  3. 3.
    Shahabadi N, Mohammadpour M (2012). Spectrochim Acta A Mol Biomol Spectrosc 86:191–195CrossRefGoogle Scholar
  4. 4.
    Pieniążek E, Kalembkiewicz J, Dranka M, Woźnicka E (2014). J Inorg Biochem 141:180–187CrossRefGoogle Scholar
  5. 5.
    Chen Y, Zheng R, Jia Z, Ju Y (1990). Free Radic Biol Med 9:19–21CrossRefGoogle Scholar
  6. 6.
    Amić D, Davidović-Amić D, Beslo D, Trinajstić N (2003). Croat Chem Acta 76:55–61Google Scholar
  7. 7.
    Treml J, Šmejkal K (2016). Compr Rev Food Sci Food Saf 15:720–738CrossRefGoogle Scholar
  8. 8.
    Husain SR, Cillard J, Cillard P (1987). Phytochemistry 26:2489–2491CrossRefGoogle Scholar
  9. 9.
    Chen J-W, Zhu Z-Q, Hu T-X, Zhu D-Y (2002). Acta Pharmacol Sin 23:667–672PubMedGoogle Scholar
  10. 10.
    Chen X, Deng Z, Zhang C, Zheng S, Pan Y, Wang H, Li H (2018). Food Res Int.  https://doi.org/10.1016/j.foodres.2018.11.018
  11. 11.
    Dar RA, Naikoo GA, Hassan IU, Shaikh AMH (2016). Anal Chem Res 7:1–8CrossRefGoogle Scholar
  12. 12.
    Li H-W, Zou T-B, Jia Q, Xia E-Q, Cao W-J, Liu W, He T-P, Wang Q (2016). Biomed Pharmacother 84:909–916CrossRefGoogle Scholar
  13. 13.
    Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM (2000). J Phys Org Chem 13:253–265CrossRefGoogle Scholar
  14. 14.
    Georgieva I, Trendafilova N, Aquino AJA, Lischka H (2006). J Phys Chem A 111:127–135CrossRefGoogle Scholar
  15. 15.
    Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012). Food Chem 135:2070–2077CrossRefGoogle Scholar
  16. 16.
    Yasarawan N, Thipyapong K, Ruangpornvisuti V (2014). J Mol Graph Model 51:13–26CrossRefGoogle Scholar
  17. 17.
    Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2004). Chem Phys Chem 5:1726–1733CrossRefGoogle Scholar
  18. 18.
    Sadasivam K, Kumaresan R (2011). Mol Phys 109:839–852CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams DF, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 (Revision B.01). Gaussian Inc., WallingfordGoogle Scholar
  20. 20.
    Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  21. 21.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008). J Chem Theory Comput 4:123–135CrossRefGoogle Scholar
  22. 22.
    Shchavlev AE, Pankratov AN, Shalabay AV (2005). J Phys Chem A 109:4137–4148CrossRefGoogle Scholar
  23. 23.
    Hao C, Tureček F (2009). J Am Soc Mass Spectrom 20:639–651CrossRefGoogle Scholar
  24. 24.
    Li M, Xie L-F, Ju X-H, Zhao F-Q (2013). Petrol Chem+ 53:431–437CrossRefGoogle Scholar
  25. 25.
    Yasarawan N, Thipyapong K, Ruangpornvisuti V (2016). J Mol Struct 1107:278–290CrossRefGoogle Scholar
  26. 26.
    Marenich AV, Cramer CJ, Truhlar DG (2009). J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  27. 27.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. TCI, University of Wisconsin, MadisonGoogle Scholar
  28. 28.
    Zhao J, Zhang R (2008) In: Sabin J, Brandas E (eds) Advances in Quantum Chemistry: Applications of Theoretical Methods to Atmospheric Science, vol 55. Academic Press, San Diego, pp 177–214CrossRefGoogle Scholar
  29. 29.
    Suwattanamala A, Ruangpornvisuti V (2009). Struct Chem 20:619–631CrossRefGoogle Scholar
  30. 30.
    Seyoum A, Asres K, El-Fiky FK (2006). Phytochemistry 67:2058–2070CrossRefGoogle Scholar
  31. 31.
    Matei I, Tablet C, Ionescu S, Hillebrand M (2014). Rev Roum Chim 59:401–405Google Scholar
  32. 32.
    Anouar EH, Marakchi K, Komiha N, Kabbaj OK, Dhaouadi Z, Lahmar S (2009). Phys Chem News 45:107–113Google Scholar
  33. 33.
    Atohoun YGS, Doco RC, Houngue MTAK, Kuevi AU, Kpotin GA, Mensah J-B (2016). Am J Sci Ind Res 7:145–152Google Scholar
  34. 34.
    Dimitrić Marković JM, Milenković D, Amić D, Popović-Bijelić A, Mojović M, Pašti IA, Marković ZS (2014). Struct Chem 25:1795–1804CrossRefGoogle Scholar
  35. 35.
    van Acker SABE, de Groot MJ, van den Berg D-J, Tromp MNJL, Donne-Op den Kelder G, van der Vijgh WJF, Bast A (1996). Chem Res Toxicol 9:1305–1312CrossRefGoogle Scholar
  36. 36.
    Rong YZ, Wang ZW, Zhao B (2013). Food Biophys 8:90–94CrossRefGoogle Scholar
  37. 37.
    Bondi A (1964). J Phys Chem 68:441–452CrossRefGoogle Scholar
  38. 38.
    Parthasarathi P, Subramanian V (2006) Characterization of Hydrogen Bonding: From van der Waals Interactions to Covalency. In: Grabowski SJ (ed) Hydrogen Bonding - New Insights, vol 3. Challenges and Advances in Computational Chemistry and Physics, vol 3. Springer, Dordrecht, pp 1–50Google Scholar
  39. 39.
    Cao S, Jiang X, Chen J (2010). J Inorg Biochem 104:146–152CrossRefGoogle Scholar
  40. 40.
    Souza RFV, De Giovani WF (2005). Spectrochim Acta A Mol Biomol Spectrosc 61:1985–1990CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceBurapha UniversityChonburiThailand

Personalised recommendations