Advertisement

Structural Chemistry

, Volume 30, Issue 6, pp 2389–2399 | Cite as

Exploring chelating features of simple diacid chelates with Hg(II), Cd(II), and Pb(II) ions: theoretical study by density functional theory

  • Amer A. G. Al Abdel HamidEmail author
Original Research
  • 31 Downloads

Abstract

Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations at the B3LYP level were used to explore the complexation of malonic, succinic, adipic, and superic diacid chelates with each of the divalent metal cations series (Hg, Cd, and Pb). Di-deprotonated form of the above chelates was used in complexation calculations. Geometry optimizations, along with vibrational frequencies and charge distribution of simulates, all have been performed in the vacuum phase with B3LYP/ LanL2DZ. The extraction preferential of SUP toward Hg(II), Cd(II), and Pb(II) when compared to MAL, SUC, ADP diacid chelates, in addition to high affinity and excellent extraction efficiency observed for Pb(II) by SUP chelates, was also investigated. Furthermore, theoretical calculations were employed to deeply investigate the experimental findings that have been reported in an earlier published research work, where the effect of the (CH2) extension on extractability of the examined diacid chelates toward the mentioned ions, was the main focus. With the help of these calculations, the concept that SUP, rather than MAL, SUC, or ADP, possesses a remarkable stability enough to extract Pb(II) efficiently and has been proven to chiefly arise from the fact of having unique geometrical and electronic properties. These qualifications have promoted SUP to establish tight binding with the incoming metal ion and therefore acting as an exceptional extractor.

Keywords

TD-DFT theoretical investigation Diacid chelators Extraction Lead Mercury Cadmium Heavy metals 

Notes

Funding

This work was financially supported by the Faculty of Graduate Studies and Scientific Research Yarmouk University (Grant number 30/2015).

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. 1.
    Hamid AAA, Tripp CP, Bruce AE, Bruce MRM (2010). J Coord Chem 63(5):731–741Google Scholar
  2. 2.
    Clarkson TW (1998). J Trace Elem Exp Med 11:303–317Google Scholar
  3. 3.
    Clarkson TW, Magos L, Myers GJ (2003). J Trace Elem Exp Med 16:321–343Google Scholar
  4. 4.
    Weiss B, Clarkson TW, Simon W (2002). Environ Health Perspect 110(5):851–854PubMedPubMedCentralGoogle Scholar
  5. 5.
    Hamid AAA, Tripp CP, Bruce AE, Bruce MRM (2011). Res Chem Intermed 37:791–810Google Scholar
  6. 6.
    Halim SA (2018). J Solution Chem 47:172–197Google Scholar
  7. 7.
    Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, Zuniga-Charles M, Xu Z, Hurlbut KM, Junco-Munoz P, Dart RC, Aposhian MM (1995). Toxicology 97:23–38PubMedGoogle Scholar
  8. 8.
    Campbell JR, Clarkson TW, Omar MD (1986). J Am Med Assoc 256:3127–3130Google Scholar
  9. 9.
    Greenwood NN, Earnshaw A (1984) Chemistry of the elements2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  10. 10.
    Haworth DT (1998). J Chem Educ 75:47Google Scholar
  11. 11.
    Roundhill DM, Solangi IB, Memon S, Bhanger MI, Yilmaz M, Pakistan J (2009). Anal Environ Chem 10:1–13Google Scholar
  12. 12.
    Andersen O (1999). Chem Rev 99:2683PubMedGoogle Scholar
  13. 13.
    Juxia F, Hoffmeyer RE, Pushie MJ, Singh SP (2011). J Biol Inorg Chem 16:15–24Google Scholar
  14. 14.
    Adamson AW (1954). J Am Chem Soc 76:1578Google Scholar
  15. 15.
    Chung CS (1979). Inorg Chem 18:1321Google Scholar
  16. 16.
    Eugenijus N, Ernestas G, Irena S, Crans DC (2005). Heteroat Chem 16(4):285–291Google Scholar
  17. 17.
    Doyle FM, Pouillon D (1988). Hy-drometallurgy 19:289–308Google Scholar
  18. 18.
    Preston JS (1985). Hydrometallurgy. 14:171–188Google Scholar
  19. 19.
    Shome M, Mishra N (2016) A review. Indian J Adv Chem Sci 4(1):56–67Google Scholar
  20. 20.
    Sivasankar BN (2006). J Therm Anal Calorim 86(2):385–392Google Scholar
  21. 21.
    Amer AG, Hamid AA (2018). Sep Sci Technol 53(2):230–242Google Scholar
  22. 22.
    Hamid AAG (2017). Sep Sci Technol 52(10):1680–1695Google Scholar
  23. 23.
    Hamid AAA, Kanan S, Tahat AZ (2014). Res Chem Intermed.  https://doi.org/10.1007/s11164-014-1783-6 Google Scholar
  24. 24.
    Amer AG. Hamid AA (2018). Substituent effect on pyridine efficacy as a chelating stabilizer, pyridine Pratima Parashar, IntechOpen.  https://doi.org/10.5772/intechopen.75046. Available from: https://www.intechopen.com/books/pyridine/substituent-effect-on-pyridine-efficacy-as-a-chelating-stabilizer Google Scholar
  25. 25.
    Parajuli R (2012). Acta Chim Pharm Indica 2(2):85–94Google Scholar
  26. 26.
    Karakas D, Sayin K (2013). Indian J Chem 52A:480–485Google Scholar
  27. 27.
    Castillo UJ, Torres AE, Fomine S (2014). J Mol Model 20:2206PubMedGoogle Scholar
  28. 28.
    Bharty MK, Kushawaha SK, Chaudhari UK, Dani RK, Maiti B, Butcher RJ (2017). Transit Met Chem 42:243–252Google Scholar
  29. 29.
    Liu J, Liu H, Li Y, Wang H (2014). J Biol Phys 40:313–323PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bik’el’e DM, Zobo JM, Lissouck D, Younang E, Nono JH, Mbaze LM (2015). J Chem Chem Eng 9:1–14Google Scholar
  31. 31.
    Lima FCA, Viana RB, Carneiro JWM, Comar Jr M, Da Silva ABF (2013). J Comput Theor Nanosci 10(9):2034–2040Google Scholar
  32. 32.
    Boukli-Hacene F, Ghalem S, Merad M, Soufi W (2016). Asian J Chem 28(6):1293–1296Google Scholar
  33. 33.
    Singh S, Singh J, Gulia S, Kakkar R (2013). J Theor Chem 1–9Google Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  35. 35.
    Gu J, Chen J, Schmehl RH (2010). J Am Chem Soc 132:7338PubMedGoogle Scholar
  36. 36.
    Jahromi MSF, Fattahi A (2009). Trans C Chem Chem Eng 16(2):75–80Google Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37(2):785–789Google Scholar
  38. 38.
    Hay PJ, Wadt WR (1985). J Chem Phys 82(1):270–283Google Scholar
  39. 39.
    Sabolovi’c J, Tautermann CS, Loerting T, Liedl KR (2003). Inorg Chem 42(7):2268–2279Google Scholar
  40. 40.
    De Bruin TJM, Marcelis ATM, Zuilhof H, Sudholter EJR (1999). Phys Chem Chem Phys 1(18):4157–4163Google Scholar
  41. 41.
    Angelis FD, Fantacci S, Selloni A (2004). Phys Lett 204:389Google Scholar
  42. 42.
    Nazeeruddin MK et al (2006). Inorg Chem 45:787PubMedGoogle Scholar
  43. 43.
    Ghosh S (2006). Inorg Chem 45:7600PubMedGoogle Scholar
  44. 44.
    Peltier C (2010). J Phys Chem A 114:8434PubMedGoogle Scholar
  45. 45.
    Dunning Jr TH, Hay PJ (1976) Modern Theoretical Chemistry3rd edn. H.F. Schaefer, Plenum, pp 1–28Google Scholar
  46. 46.
    Angelis FD, Fantacci AS (2004). Phys Lett 389:204Google Scholar
  47. 47.
    Amer AG, Hamid A (2016). Jordan J Chem 11(1):8Google Scholar
  48. 48.
    Amer A, Hamid G, Kanan AS (2012). J Coord Chem 65(3):42Google Scholar
  49. 49.
    Amer A, Hamid G (2012). Res Chem Intermed 38:9Google Scholar
  50. 50.
    Angelis FD (2005). Chem Phys Lett 415:115Google Scholar
  51. 51.
    Nazeeruddin MK (2005). J Am Chem Soc 127:16835PubMedGoogle Scholar
  52. 52.
    Amer A Hamid G, Kanan S, Tahat AZ (2014). Res Chem IntermedGoogle Scholar
  53. 53.
    Cioslowski J (1989). J Am Chem Soc Chem Soc 111:8333Google Scholar
  54. 54.
    Gross KC, Seybold PG, Hadad CM (2002). Int J Quantum Chem 90:445Google Scholar
  55. 55.
    Besler BH, Merz KM, Kollman PA (1990). J Comput Chem 11:431Google Scholar
  56. 56.
    Ferreira M, Suto E (1992). J Phys Chem 66:8844Google Scholar
  57. 57.
    Singh UC, Kollman PA (1984). J Comput Chem 5:129Google Scholar
  58. 58.
    George GN, Prince RC, Gailer J, Buttigieg GA, Denton MB, Harris HH, Pickering IJ (2004). Chem Res Toxicol 17:999–1006PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryYarmouk UniversityIrbidJordan

Personalised recommendations