Advertisement

Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles

  • Wolfgang Holzer
  • Laura Castoldi
  • Viktoriya Kyselova
  • Dionisia Sanz
  • Rosa M. ClaramuntEmail author
  • M. Carmen Torralba
  • Ibon AlkortaEmail author
  • José Elguero
Original Research
  • 49 Downloads

Abstract

The 1H, 13C, and 15N chemical shifts of almost the whole series of N-benzyl azoles and benzazoles, with the exception of the unknown 1-benzyl-1H-pentazole (10) and the very unstable 2-benzyl-2H-isoindole (12), have been measured. In addition, the X-ray crystal structure of 1-benzyl-1H-indazole (14) was solved (monoclinic, space group P21/n), its geometry being very close to that used for the calculations. The absolute chemical shieldings were calculated at the gauge-independent atomic orbital (GIAO)/Becke, 3-parameter, Lee-Yang-Parr (B3LYP)/6-311++G(d,p) level and then transformed with very robust empirical equations into chemical shifts of the three nuclei showing an excellent agreement with the 313 experimental values.

Keywords

Proton NMR Carbon-13 NMR Nitrogen-15 NMR GIAO calculations X-ray crystal structure N-benzylazoles 

Notes

Funding information

This work was carried out with financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (Projects PGC2018-094644-B-C2 and RTI2018-097416-B-C21) and Dirección General de Investigación e Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM). Thanks are also given to the CTI (CSIC) for their continued computational support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2019_1310_MOESM1_ESM.pdf (524 kb)
ESM 1 (PDF 523 kb)

References

  1. 1.
    Comprehensive Heterocyclic Chemistry, three editions (I, II, III), Elsevier, Oxford, 1984, 1996, 2008Google Scholar
  2. 2.
    Katritzky AR, Lan X, Yang JZ, Denisko OV (1998). Chem Rev 98:409–548CrossRefGoogle Scholar
  3. 3.
    Doiron J, Soultan AH, Richard R, Touré MM, Picot N, Richard R, Cuperlovic-Culf M, Robichaud GA, Touaibia M (2011). Eur J Med Chem 46:4010–4024CrossRefGoogle Scholar
  4. 4.
    Begtrup M, Larson P (1990). Acta Chem Scand 44:1050–1057CrossRefGoogle Scholar
  5. 5.
    Jones RG (1949). J Am Chem Soc 71:3994–4000CrossRefGoogle Scholar
  6. 6.
    Jones RG, Ainsworth C (1954). J Am Chem Soc 77:1538–1540CrossRefGoogle Scholar
  7. 7.
    Bulger PG, Cottrell IF, Cowden CJ, Davies AJ, Dolling UH (2000). Tetrahedron Lett 41:1297–1301CrossRefGoogle Scholar
  8. 8.
    Ottoni O, Cruz R, Alves R (1998). Tetrahedron 54:13915–13928CrossRefGoogle Scholar
  9. 9.
    Milen M, Grün A, Balint E, Dancso A, Keglevich G (2010). Synth Commun 40:2291–2301CrossRefGoogle Scholar
  10. 10.
    Chen Q, Mao Z, Guo F, Liu X (2016). Tetrahedron Lett 57:3735–3738CrossRefGoogle Scholar
  11. 11.
    Abenhaim D, Diez-Barra E, de la Hoz A, Loupy A, Sánchez-Migallón A (1994). Heterocycles 38:793–802CrossRefGoogle Scholar
  12. 12.
    Nishi H, Kohno H, Kano T (1981). Bull Chem Soc Jpn 54:1897–1898CrossRefGoogle Scholar
  13. 13.
    Sheldrick GM (2008). Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  14. 14.
    Sheldrick GM (2015). Acta Crystallogr C 71:3–8CrossRefGoogle Scholar
  15. 15.
    Dolomanov OV, Bourhis LJ, Gildea RJ, JAK H, Puschmann H (2009). J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  16. 16.
    Becke AD (1988). Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  17. 17.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  18. 18.
    Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Pople JA, Binkley JS (1984). J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  20. 20.
    Sanz D, Claramunt RM, Roussel C, Alkorta I, Elguero J (2018). Indian J Heterocycl Chem 28:1–10Google Scholar
  21. 21.
    London F (1937). J Phys Radium 8:397–409CrossRefGoogle Scholar
  22. 22.
    Ditchfield R (1974). Mol Phys 27:789–807CrossRefGoogle Scholar
  23. 23.
    Gaussian 09 (2009) Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr., JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CTGoogle Scholar
  24. 24.
    AMS S, RMS S, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008). Magn Reson Chem 46:859–864CrossRefGoogle Scholar
  25. 25.
    Blanco F, Alkorta I, Elguero J (2007). Magn Reson Chem 45:797–800CrossRefGoogle Scholar
  26. 26.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC, The Cambridge Structural Database (2016) The Cambridge structural database. Acta Crystallogr Sect B 72:171–179.  https://doi.org/10.1107/S2052520616003954 CrossRefGoogle Scholar
  27. 27.
    Joyce SA, Yates JR, Pickard CJ, Mauri F (2007). J Chem Phys 127:204107CrossRefGoogle Scholar
  28. 28.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005). Z Kristallogr 220:567–570Google Scholar
  29. 29.
    Marín-Luna M, Claramunt RM, Nieto CI, Alkorta I, Elguero J, Reviriego F (2019). A theoretical NMR study of polymorphism in crystal structures of azoles and benzazoles. Magn Reson Chem.  https://doi.org/10.1002/mrc.4824
  30. 30.
    Butler RN, Stephens JC, Burke LA (2003). Chem Commun:1016–1017Google Scholar
  31. 31.
    Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008). J Organomet Chem 73:1354–1364CrossRefGoogle Scholar
  32. 32.
    Huang H, Zhong J, Ma L, Lv L, Francisco JS, Zeng XC (2019). J Am Chem Soc 141:2984–2989.  https://doi.org/10.1021/jacs.8b11335
  33. 33.
    Carpino LA, Padykula RE, Barr DE, Hall FH, Krause JG, Dufresne RF, Thoman CJ (1988). J Organomet Chem 53:2565–2572CrossRefGoogle Scholar
  34. 34.
    Hansch C, Leo A (1995) Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. American Chemical Society, Whashington, DC Google Scholar
  35. 35.
    Alkorta I, Elguero J (2018). Chem Phys Lett 691:33–36CrossRefGoogle Scholar
  36. 36.
    Elguero J, Marzin C, Tizané D (1969). Org Magn Reson 1:249–275CrossRefGoogle Scholar
  37. 37.
    Hung TQ, Dang TT, Janke J, Villinger A, Langer P (2015). Org Biomol Chem (13):1375–1386Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry, Faculty of Life SciencesUniversity of ViennaViennaAustria
  2. 2.Departamento de Química Orgánica y Bio-Orgánica, Facultad de CienciasUNEDMadridSpain
  3. 3.Departamento de Química Inorgánica, Facultad de Ciencias QuímicasUCM, Ciudad Universitaria s/nMadridSpain
  4. 4.Instituto de Química Médica, Centro de Química Orgánica “Manuel Lora-Tamayo”, CSICMadridSpain

Personalised recommendations