Advertisement

Theoretical study of the substituent effect of hydroxy group on tandem Cope rearrangement and [2 + 2] cycloaddition in cis-1,2-diethynylcyclopropane and its mono-hetero analogues

  • Manjinder Kour
  • Nivedita Sharma
  • Raj K. BansalEmail author
Original Research
  • 11 Downloads

Abstract

The tandem Cope rearrangement and [2 + 2] cycloaddition of cis-1,2-diethynyl-1,2-dihydroxycyclopropane and its mono-hetero analogues have been investigated at the B3LYP/6-31+G* level. The presence of the hydroxy group lowers the activation enthalpies for the Cope rearrangement, whereas activation enthalpies for the [2 + 2] cycloaddition are raised as compared to those for their non-hydroxy derivatives. The NBO analysis indicates that in the transition structure involved in the Cope rearrangement, lone pairs of the oxygen atoms of the hydroxy groups are transferred into the σ* C–C bond undergoing migration, as a result of which it is weakened. On the other hand, the lone pairs of the oxygen atoms interact with the π* C=C orbitals of the bis-allenic systems in the intermediate thereby stabilizing it and, thus, suppressing its driving ability for the [2 + 2] cycloaddition. In the products so formed, 6π electrons are delocalized conferring stability on them, which is further augmented by extended conjugation with the hydroxy groups. Due to high stability of these products, activation barrier for the change of enol into ketone is very high.

Keywords

cis-1,2-Diethynyl-1,2-dihydroxycyclopropane Cope rearrangement [2 + 2] Cycloaddition Effect of hydroxy group DFT studies 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Author agreement

All authors have read and approved to submit it to your journal. This paper has not been submitted elsewhere for consideration of publication.

Supplementary material

11224_2018_1275_MOESM1_ESM.pdf (311 kb)
ESM 1 (PDF 311 kb)

References

  1. 1.
    Cope AC, Hardy EM (1940). J Am Chem Soc 62:441CrossRefGoogle Scholar
  2. 2.
    Berson JA, Jones M (1964). J Am Chem Soc 86:5019CrossRefGoogle Scholar
  3. 3.
    Hill RK (1991) Cope, oxy-Cope and anionic oxy-Cope rearrangements in comprehensive organic synthesis, vol 5. Pergamon Press, Oxford, pp 785–826Google Scholar
  4. 4.
    Parr BT, Davies HML (2014). Nat Commun 5:4455CrossRefGoogle Scholar
  5. 5.
    Durairaj K (1994). Curr Sci 66:917Google Scholar
  6. 6.
    Hikami K, Nakai T (1982) Chem Lett 1350Google Scholar
  7. 7.
    Tlardi EA, Stivala CE, Zakarian A (2009). Chem Soc Rev 38:3133 and references cited thereinCrossRefGoogle Scholar
  8. 8.
    Warrington JM, Yap GPA, Barriault L (2000). Org Lett 2:663CrossRefGoogle Scholar
  9. 9.
    Jones AC, May JA, Sarpong R, Stoltz BM (2014). Angew Chem Int Ed 53:2556 and references cited thereinCrossRefGoogle Scholar
  10. 10.
    Wilson JW, Sherrod SA (1968) Chem Commun (London) 1443Google Scholar
  11. 11.
    Viola A, MacMillan JH (1968). J Am Chem Soc 90:6141CrossRefGoogle Scholar
  12. 12.
  13. 13.
    D’Amore MB, Bergman RG (1969). J Am Chem Soc 91:5694CrossRefGoogle Scholar
  14. 14.
    D’Amore MB, Bergman RG, Kent ME, Hedaya E (1972) J Chem Soc Chem Commun 49Google Scholar
  15. 15.
    Vollhardt KPC, Bergman RG (1972). J Am Chem Soc 94:8950CrossRefGoogle Scholar
  16. 16.
    Kour M, Gupta R, Bansal RK (2018). Comput Theor Chem 1123:142CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene V, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts V, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford V, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Inc., WallingfordGoogle Scholar
  18. 18.
    Gonzalez C, Schlegel HB (1989). J Chem Phys 90:2154CrossRefGoogle Scholar
  19. 19.
    Gonzalez C, Weinhold F (1990). J Chem Phys 94:5523CrossRefGoogle Scholar
  20. 20.
    Reed AE, Weinhold F (1985). J Chem Phys 83:1736CrossRefGoogle Scholar
  21. 21.
    Foresman JB, Frisch AE (2015) Exploring chemistry with electronic structure methods3rd edn. Gaussian Inc, Wallingford, p 380Google Scholar
  22. 22.
    Berson JA, Walsch Jr EJ (1968). J Am Chem Soc 90:4730CrossRefGoogle Scholar
  23. 23.
    Hoffmann R, Radom L, Pople JA, Schleyer PR, Hehre WJ, Salem L (1972). J Am Chem Soc 94:6221CrossRefGoogle Scholar
  24. 24.
    Karni M, Bernasconi CF, Rappoport Z (2008). J Org Chem 73:2980CrossRefGoogle Scholar
  25. 25.
    King JF, Rathore R, Guo Z, Li M, Payne C (2000). J Am Chem Soc 122:10308CrossRefGoogle Scholar
  26. 26.
    Li Y, Houk KN (1993). J Am Chem Soc 115:7478CrossRefGoogle Scholar
  27. 27.
    Houk KN, Li Y, Storer J, Raimondi L, Beno B (1994). J Chem Soc Faraday Trans 90:1599CrossRefGoogle Scholar
  28. 28.
    Li Y, Houk KN (1996). J Am Chem Soc 118:880CrossRefGoogle Scholar
  29. 29.
    Kour A, Kour M, Gupta R, Bansal RK (2017). Phosphorus Sulphur Silicon Relat Elem 192:674CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Applied SciencesSuresh Gyan Vihar UniversityJaipurIndia
  2. 2.Department of ChemistryThe IIS UniversityJaipurIndia

Personalised recommendations