DFT study of response mechanism and selectivity of poly(3,4-ethylenedioxythiophene) towards CO2 and SO2 as gas sensor

  • Joyanta K. SahaEmail author
  • Md. Sanwar Hossain
  • Manik Kumer Ghosh
Original Research


To evaluate the sensing ability of poly(3,4-ethylenedioxythiophene) (PEDOT) towards CO2 and SO2 gaseous molecules, an extensive quantum mechanical study has been carried out by using two different level of theories, i.e., B3LYP/6-31+G(d) and M06-2X/6-31+G(d,p). The comprehensive details of both physisorption and chemisorption mechanisms have been explored to understand the selectivity and sensitivity of PEDOT for these two analytes. Through the physisorption channel, the interaction energies of CO2 and SO2 with PEDOT are calculated as − 4.9 kcal/mol and − 7.5 kcal/mol at M06-2X/6-31+G(d,p), respectively, which indicate that the PEDOT molecule has strong sensing ability with SO2 than CO2. For the chemisorption, both [2+2] and [4+2] cycloaddition mechanisms have been explored extensively with all possibilities. The minimum activation energies have been found 38.2 and 22.7 kcal/mol for CO2 and SO2 through the [2+2] and [4+2] cycloaddition reactions with PEDOT, respectively, indicated that chemisorption mechanism is not thermodynamically favorable and kinetically accessible at room temperature. The frontier molecular orbital, natural bond orbital (NBO) charges, and UV-vis spectra analysis are further evident for the selectivity and sensitivity of PEDOT for SO2 molecule. In summary, it can be concluded that physisorption channel is more energetically favorable than chemisorption channel for PEDOT with both gases and it has greater response selectivity towards SO2 compared to CO2 at room temperature.


Gas sensor PEDOT DFT Physisorption CO2 SO2 


Funding information

This study was supported by Research Grant (No. 16-008 RG/CHE/AS_I—FR3240293317) funded by The World Academy of Sciences (TWAS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1272_MOESM1_ESM.docx (13.3 mb)
ESM 1 (DOCX 13626 kb)


  1. 1.
    Fine GF, Cavanagh LM, Afonja A, Binions R (2010). Sensors 10(6):5469–5502PubMedCrossRefGoogle Scholar
  2. 2.
    Catto AC, da Silva LF, Ribeiro C, Bernardini S, Aguir K, Longo E, Mastelaro VR (2015). RSC Adv 5(25):19528–19533CrossRefGoogle Scholar
  3. 3.
    Ramamoorthy R, Dutta PK, Akbar SA (2003). J Mater Sci 38(21):4271–4282CrossRefGoogle Scholar
  4. 4.
    Comini E, Sberveglieri G (2010). Mater Today 13(7):36–44CrossRefGoogle Scholar
  5. 5.
    Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N, Yamazoe N (2001). Sensors Actuators B Chem 77(1):72–77CrossRefGoogle Scholar
  6. 6.
    Schrag DP (2007). Science 315(5813):812–813PubMedCrossRefGoogle Scholar
  7. 7.
    Ullah H, Shah A-u-HA, Bilal S, Ayub K (2013). J Phys Chem C 117(45):23701–23711CrossRefGoogle Scholar
  8. 8.
    Sun B, Xie G, Jiang Y, Li X (2011). Energy Procedia 12:726–732CrossRefGoogle Scholar
  9. 9.
    Kruse H, Tekiela M (1996). Energy Convers Manag 37(6):1013–1018CrossRefGoogle Scholar
  10. 10.
    Rad AS, Valipour P, Gholizade A, Mousavinezhad SE (2015). Chem Phys Lett 639:29–35CrossRefGoogle Scholar
  11. 11.
    Yuliarto B, Gumilar G, Septiani NLW (2015). Adv Mater Sci Eng 2015:14Google Scholar
  12. 12.
    Chen D, Zhang X, Tang J, Cui Z, Cui H, Pi S (2018). IEEE Electron Device Lett 39(9):1405–1408CrossRefGoogle Scholar
  13. 13.
    Cui H, Zhang G, Zhang X, Tang J (2019) Rh-doped MoSe2 as a toxic gas scavenger: a first-principles study. Nanoscale Advances.
  14. 14.
    Zhang X, Cui H, Gui Y (2017). Sensors 17(2):363CrossRefGoogle Scholar
  15. 15.
    Zhang X, Yu L, Wu X, Hu W (2015). Adv Sci 2(11):1500101CrossRefGoogle Scholar
  16. 16.
    Cui H, Zhang X, Chen D, Tang J (2018). Appl Surf Sci 447:594–598CrossRefGoogle Scholar
  17. 17.
    Bai H, Shi G (2007). Sensors 7(3):267–307CrossRefGoogle Scholar
  18. 18.
    Rahman M, Kumar P, Park D-S, Shim Y-B (2008). Sensors 8(1):118PubMedCrossRefGoogle Scholar
  19. 19.
    Balint R, Cassidy NJ, Cartmell SH (2014). Acta Biomater 10(6):2341–2353PubMedCrossRefGoogle Scholar
  20. 20.
    Al-Mashat L, Tran HD, Wlodarski W, Kaner RB, Kalantar-Zadeh K (2008). IEEE Sensors J 8(4):365–370CrossRefGoogle Scholar
  21. 21.
    Chaudhary V, Kaur A (2015). RSC Adv 5(90):73535–73544CrossRefGoogle Scholar
  22. 22.
    Fort A, Innocenti M, Foresti ML, Mugnaini M, Pasquini I, Pigani L, Rocchi S, Vignoli V (2009) 3rd international workshop on advances in sensors and Interfaces, pp 184–187Google Scholar
  23. 23.
    Dunst K, Karczewski J, Jasiński P (2017). Sensors Actuators B 247:108–113CrossRefGoogle Scholar
  24. 24.
    Vázquez M, Bobacka J, Ivaska A, Lewenstam A (2002). Sensors Actuators B 82(1):7–13CrossRefGoogle Scholar
  25. 25.
    Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010). Talanta 82(4):1338–1343PubMedCrossRefGoogle Scholar
  26. 26.
    Memarzadeh R, BN H, Javadpour S, Panahi F, Feizpour A, Shim Y-B (2013). Bull Kor Chem Soc 34(8):2291CrossRefGoogle Scholar
  27. 27.
    Rad AS, Nasimi N, Jafari M, Shabestari DS, Gerami E (2015). Sensors Actuators B 220:641–651CrossRefGoogle Scholar
  28. 28.
    Ullah H, Ayub K, Ullah Z, Hanif M, Nawaz R, A-u-HA S, Bilal S (2013). Synth Met 172:14–20CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. B.01. Wallingford, CTGoogle Scholar
  30. 30.
    Becke AD (1993). J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120(1):215–241CrossRefGoogle Scholar
  33. 33.
    Marenich AV, Ding W, Cramer CJ, Truhlar DG (2012). J Phys Chem Lett 3(11):1437–1442PubMedCrossRefGoogle Scholar
  34. 34.
    Chamberlin AC, Cramer CJ, Truhlar DG (2008). J Phys Chem B 112(29):8651–8655PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Marenich AV, Cramer CJ, Truhlar DG (2009). J Phys Chem B 113(14):4538–4543PubMedCrossRefGoogle Scholar
  36. 36.
    Gonzalez C, Schlegel HB (1990). J Phys Chem 94(14):5523–5527CrossRefGoogle Scholar
  37. 37.
    Gonzalez C, Schlegel HB (1991). J Chem Phys 95(8):5853–5860CrossRefGoogle Scholar
  38. 38.
    Chen S, Kar T (2012). Int J Electrochem Science 7:6265Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryJagannath UniversityDhakaBangladesh
  2. 2.School of Physics, Trinity College DublinThe University of DublinDublinIreland

Personalised recommendations