Advertisement

Enhanced nonlinear optical properties of porphyrin with an extended π-conjugated bridge

  • Yao-Dong SongEmail author
  • Qian-Ting WangEmail author
Original Research
  • 24 Downloads

Abstract

In this work, a series of molecules with an extended π-conjugated bridge have been theoretically designed based on porphyrin, where -(CH=CH)n- (n = 1–4, 8, 12) chain is served as an extended π-conjugated bridge. It is found that all molecules exhibit large energy gaps in the range of 3.484–4.151 eV for porphyrin-(CH=CH)n-NH2, and 3.624–4.250 for porphyrin-(CH=CH)n-NO2. The maximum absorption wavelengths of all molecules show a red shift trend with increasing -(CH=CH)n- length, which leads to small transition energy. It is observed that long chain brings these molecules the large first hyperpolarizability, which are 1.04 × 105 au for porphyrin-(CH=CH)12-NH2, 1.26×105 au for porphyrin-(CH=CH)12-NO2. Moreover, compared with -(CH=CH)n-NH2 with the same chain length, -(CH=CH)n-NO2 chain can achieve larger nonlinear optical response. It is hoped that the research in this paper can provide a new strategy for the experimental design of nonlinear optical materials.

Keywords

Porphyrin An extended π-conjugated bridge First hyperpolarizability 

Notes

Funding information

The work was supported by the start-up Foundation of Fujian University of Technology (GY-Z13109), Development Foundation of Fujian University of Technology (GY-Z160127), the Education Department of Fujian Province(GY-Z17105, JAT170393), Science and Technology Major Special Project of Fujian Province (2014HZ0005-1), Industrial Technology joint Innovation Project of Fujian Province (2015-779), and Fujian Province Science and Technology Innovation Leaders (GY-Z17142).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bessho T, Zakeeruddin SM, Yeh CY, Diau EWG, Grätzel M (2010). Angew Chem Int Ed 49:6646–6649CrossRefGoogle Scholar
  2. 2.
    Reddy BK, Basavarajappa A, Ambhore MD, Anand VG (2017). Chem Rev 117:3420–3443CrossRefGoogle Scholar
  3. 3.
    Zhang A, Li C, Yang F, Zhang J, Wang Z, Wei Z, Li W (2017). Angew Chem Int Ed 56:1–6CrossRefGoogle Scholar
  4. 4.
    Zhu M, Dong Y, Du Y, Mou Z, Liu J, Yang P, Wang X (2012). Chem Eur J 18:4367–4374CrossRefGoogle Scholar
  5. 5.
    Shin JY, Kim KS, Yoon MC, Lim JM, Yoon ZS, Osuka A, Kim D (2010). Chem Soc Rev 39:2751–2767CrossRefGoogle Scholar
  6. 6.
    Imahorii H, Umeyama T, Kurotobi K, Takano Y (2012). Chem Commun 48:4032–4045CrossRefGoogle Scholar
  7. 7.
    Hoang MH, Kim Y, Kim SJ, Choi DH, Lee SJ (2011). Chem Eur J 17:7772–7776CrossRefGoogle Scholar
  8. 8.
    Yella A, Lee HW, Tsao NH, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeer-uddin SM, Grätzel M (2011). Science 334:629–634CrossRefGoogle Scholar
  9. 9.
    Srinivasan A, Furuta H (2005). Acc Chem Res 38:10–20CrossRefGoogle Scholar
  10. 10.
    Stepien M, Latos-Grazynski L (2002). J Am Chem Soc 124:3838–3839CrossRefGoogle Scholar
  11. 11.
    Lash TD (2014). Chem Asian J 9:682–705CrossRefGoogle Scholar
  12. 12.
    Brennan BJ, Liddell PA, Moore TA, Moore AL, Gust D (2013). J Phys Chem B 117:426–432CrossRefGoogle Scholar
  13. 13.
    Luo J, Xu M, Li R, Huang KW, Jiang C, Qi Q, Zeng W, Zhang J, Chi C, Wang P, Wu J (2014). J Am Chem Soc 136:265–272CrossRefGoogle Scholar
  14. 14.
    Wang A, Long L, Zhao W, Song Y, Humphrey MG, Cifuentes MP, Wu X, Fu Y, Zhang D, Li X, Zhang C (2013). Carbon 53:327–338CrossRefGoogle Scholar
  15. 15.
    Liu B, Zhu W, Wang Y, Wu W, Li X, Chen B, Long YT, Xie Y (2012). J Mater Chem 22:7434–7444CrossRefGoogle Scholar
  16. 16.
    Huang Y, Li L, Peng X, Peng J, Cao Y (2012). J Mater Chem 22:21841–21844CrossRefGoogle Scholar
  17. 17.
    Hassan S, Zhou Y, Zhang L, Shi Z, Yang D, Asif HM, Qu N (2016). J Phys Chem C 120:7757–7766CrossRefGoogle Scholar
  18. 18.
    Cornelis D, Franz E, Asselberghs I, Clays K, Verbiest T, Koeckelberghs G (2011). J Am Chem Soc 133:1317–1327CrossRefGoogle Scholar
  19. 19.
    Coe BJ, Fielden J, Foxon SP, Asselberghs I, Clays K, Brunschwig BS (2010). Inorg Chem 49:10718CrossRefGoogle Scholar
  20. 20.
    Green KA, Cifuentes MP, Corkery C, Smaoc M, Humphrey MG (2009). Angew Chem Int Ed 48:7867–7870CrossRefGoogle Scholar
  21. 21.
    Ray PC (2010). Chem Rev 110:5332–5365CrossRefGoogle Scholar
  22. 22.
    Khan MU, Khalid M, Ibrahim M, Braga CAA, Safdar M, Al-Saadi AA, Janjua MRSA (2018). J Phys Chem C 122:4009–4018CrossRefGoogle Scholar
  23. 23.
    Wang L, Wang WY, Fang XY, Zhu CL, Qiu YQ (2016). Org Electron 33:290–299CrossRefGoogle Scholar
  24. 24.
    Vijay Solomon R, Veerapandian P, Angeline Vedha S, Venuvanalingam P (2012). J Phys Chem A 116:4667–4677CrossRefGoogle Scholar
  25. 25.
    Schulz M, Tretiak S, Chernyak V, Mukamel S (2000). J Am Chem Soc 122:452–459CrossRefGoogle Scholar
  26. 26.
    Muhammad S, Xu HL, Zhong RL, Su ZM, Al-Sehemi AG, Irfan A (2013). J Mater Chem C 1:5439–5449CrossRefGoogle Scholar
  27. 27.
    Yu GT, Zhao XG, Niu M, Huang XR, Zhang H, Chen W (2013). J Mater Chem C 1:3833–3841CrossRefGoogle Scholar
  28. 28.
    Zhou ZJ, Yu GT, Ma F, Huang XR, Wu ZJ, Li ZR (2014). J Mater Chem C 2:306–311CrossRefGoogle Scholar
  29. 29.
    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005). J Am Chem Soc 127:10977–10981CrossRefGoogle Scholar
  30. 30.
    Niu M, Yu G, Yang G, Chen W, Zhao X, Huang X (2013). Inorg Chem 53:349–358CrossRefGoogle Scholar
  31. 31.
    Yao C, Yan LK, Guan W, Liu CG, Song P, Su ZM (2010). Dalton Trans 39:7645–7649CrossRefGoogle Scholar
  32. 32.
    Liu ZB, Xu YF, Zhang XY, Zhang XL, Chen YS, Tian JG (2009). J Phys Chem B 113:9681–9686CrossRefGoogle Scholar
  33. 33.
    Torres M, Semin S, Razdolski I, Xu J, Elemans JAAW, Rasing T, Rowan AE, Nolte RJM (2015). Chem Commun 51:2855–2858CrossRefGoogle Scholar
  34. 34.
    Shelton DP, Rice JE (1994). Chem Rev 94:3–29CrossRefGoogle Scholar
  35. 35.
    Willets A, Rice JE, Burland DM, Shelton DP (1992). J Chem Phys 97:7590–7599CrossRefGoogle Scholar
  36. 36.
    Kanis DR, Ratner MA, Marks TJ (1994). Chem Rev 94:195–242CrossRefGoogle Scholar
  37. 37.
    Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2013). J Phys Chem C 117:10039–10044CrossRefGoogle Scholar
  38. 38.
    Maria, Iqbal J, Ayub k (2016). J Alloys Compd 687:976–983CrossRefGoogle Scholar
  39. 39.
    Zhang CC, Xu HL, Hu YY, Sun SL, Su ZM (2011). J Phys Chem A 115:2035–2040CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A.03. Gaussian, Inc, Wallingford CTGoogle Scholar
  41. 41.
    Dennington R, Keith TA, Millam JM (2016) GaussView version 6Google Scholar
  42. 42.
    Lu T, Chen FW (2012). J Comput Chem 33:580–592CrossRefGoogle Scholar
  43. 43.
    Oudar JL, Chemla DS (1977). J Chem Phys 66:2664–2668CrossRefGoogle Scholar
  44. 44.
    Oudar JL (1977). J Chem Phys 67:446–457CrossRefGoogle Scholar
  45. 45.
    Datta A, Pati SK (2006). Chem Soc Rev 35:1305–1323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and PhysicsFujian University of TechnologyFuzhouPeople’s Republic of China
  2. 2.Fujian Provincial Key Laboratory of Advanced Materials Processing and ApplicationFujian University of TechnologyFuzhouPeople’s Republic of China

Personalised recommendations