Structure and properties of new dicationic ionic liquid DBTMEDA(BF4)2

  • M. A. ZakharovEmail author
  • A. S. Ivanov
  • E. A. Arkhipova
  • A. V. Desyatov
  • S. V. Savilov
  • V. V. Lunin
Original Research


Dicationic ionic liquid (IL) dibutyltetramethylethylenediammonium tetrafluoridoborate was synthesized for the first time by quaternization followed by ion exchange. The chemical composition was confirmed by 1H, 19F, and 13C nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of the IL under discussion was determined from single crystal diffraction and can be described in monoclinic syngony with P21/c space group. Using thermal analysis and mass spectrometry, thermal stability of this IL as well as possible directions of its destruction was analyzed. Melting point for this liquid was determined by simultaneous thermal analysis as 135 °C. The electrochemical stability range for this ionic liquid was find to be nearly symmetrical accordingly to cyclic voltammetry and estimated as 3.75 V.


Ionic liquids Thermal analysis Crystal structure NMR spectroscopy Electrochemical window Conductivity 



The measurements were performed at MSU equipment center “Nanochemistry and Nanomaterials” within the frameworks of Moscow University Program of Development.

Funding information

Present study was supported by Russian Science Foundation project #18-13-00217.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1260_MOESM1_ESM.docx (45 kb)
ESM 1 (DOCX 45 kb)
11224_2018_1260_MOESM2_ESM.cif (17 kb)
ESM 2 (CIF 17 kb)


  1. 1.
    Holbrey JD, Rogers RD (2002) in Ionic liquids: industrial applications to green chemistry, ACS symposium series 818. Washitgton: ACS, p.2–14Google Scholar
  2. 2.
    Aslanov LA, Zakharov MA, Abramycheva NL (2005) Ionic liquids in a row of solvents. Moscow University, MoscowGoogle Scholar
  3. 3.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesisSecond edn. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Masri AN, Abdul Mutalib MI, Leveque JM (2016). Ind Eng Manage 5:197Google Scholar
  5. 5.
    Li S, Zhu M, Feng G (2016) J Phys. Condens Matter 28:464005CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Yanga L, Luoa S, Tian M, Tachibana K, Kamijima K (2007). J Power Sources 167:217CrossRefGoogle Scholar
  7. 7.
    Liu Q, van Rantwijk F, Sheldon RA (2006). J Chem Technol Biotechnol 81:401CrossRefGoogle Scholar
  8. 8.
    Lall-Ramnarine SI, Suarez SN, Fernandez ED, Rodriguez C, Wei S, Gobet M, Jayakody JRP, Dhiman SB, Wisharte JF (2017). J Electrochem Soc 164:H5150CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Zhoua H, Yanga L, Tachibana K, Kamijima K, Xud J (2008). Electrochim Acta 53:4833CrossRefGoogle Scholar
  10. 10.
    Fang D, Yang J, Jiao C (2011). ACS Catal 1:42CrossRefGoogle Scholar
  11. 11.
    Zech O, Stoppa A, Buchner R, Kunz W (2010). J Chem Eng Data 55:1774–1778CrossRefGoogle Scholar
  12. 12.
    CAD4 Express Software (1994). Enraf-Nonius, DelftGoogle Scholar
  13. 13.
    Sheldrick GM (2008) SHELX-97. Acta Cryst A64:112CrossRefGoogle Scholar
  14. 14.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008). J Appl Crystallogr 41:466CrossRefGoogle Scholar
  15. 15.
    Prasad MRR, Sudhakarbabu K (2013). J Applicable Chem 2(4):975–981Google Scholar
  16. 16.
    Kärnä M, Lahtinen M, Hakkarainen P-L, Valkonen J (2010). Aust J Chem 63:1122–1137CrossRefGoogle Scholar
  17. 17.
    Kärnä M, Lahtinen M, Valkonen J (2013). J. Chem. Eng. Data 58(7):1893–1908CrossRefGoogle Scholar
  18. 18.
    Busi S, Lahtinen M, Valkonen J, Rissanen K (2008). J Mol Struct 875:549–559CrossRefGoogle Scholar
  19. 19.
    Schomaker V, Trueblood KN (1986). Acta Crystallogr B24:63–76Google Scholar
  20. 20.
    Närhi SM, Asikkala J, Kostamo J, Lajunen MK, Oilunkaniemi R, Laitinen RS (2011). Z. Naturforsch 66b:755Google Scholar
  21. 21.
    Hattori N, Masuda H, Okabayashi H, O’Connor CJ (1998). J Mol Struct 471:13CrossRefGoogle Scholar
  22. 22.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang (2015). J Chem Soc Rev 44:7484–7539CrossRefGoogle Scholar
  23. 23.
    Arkhipova EA, Ivanov AS, Savilov SV, Maslakov KI, Chernyak SA, Tambovtseva YA, Lunin VV (2018). Funct Mater Lett 11(6):1840005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Zakharov
    • 1
    Email author
  • A. S. Ivanov
    • 1
  • E. A. Arkhipova
    • 1
  • A. V. Desyatov
    • 2
  • S. V. Savilov
    • 1
  • V. V. Lunin
    • 1
  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations