Advertisement

Metal-doped ethylene complexes for hazardous gas molecule sensing

  • Nilesh Ingale
  • Ravinder Konda
  • Ajay ChaudhariEmail author
Original Research
  • 19 Downloads

Abstract

Adsorption of hazardous gas molecules viz. NH3, HCN and Cl2 on C2H4M (M = Li, Ti) complex is studied using first-principle calculations and atom-centred density matrix propagation (ADMP) molecular dynamic simulations. Interaction of gas molecules with C2H4M complex is studied by analysing structural parameters, charge transfer and density of state plots. Adsorption of NH3, HCN and Cl2 molecules affects the binding energy of metal atom to the C2H4 substrate in C2H4M complex. ADMP molecular dynamic simulations confirmed that the NH3, HCN and Cl2 molecules remain adsorbed during the simulation on C2H4M complex for the entire temperature and pressure range considered. C2H4M complex can be used as a gas sensing material for NH3, HCN and Cl2 molecules.

Keywords

Hazardous molecules DOS Molecular dynamic simulations Gas sensing 

Notes

Funding information

The study is financially supported by the University Grant Commission (UGC), New Delhi, India under UGC-NFSC (Award No. RGNF-2017-18-SC-MAH-37194) scheme to Mr. Nilesh Ingale.

Compliance with ethical standards

Ethical statement

The work has not been submitted elsewhere for publication. The claimed new results express our own findings.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Carson PA (2002) Hazardous chemicals handbook. Butterworth-Heinemann, OxfordGoogle Scholar
  2. 2.
    Dawson CJ, Hilton J (2011). Food Policy 36:14CrossRefGoogle Scholar
  3. 3.
    Timmer B, Olthuis W, Berg AV (2005). Sensors Actuators B Chem 107:666–677CrossRefGoogle Scholar
  4. 4.
    Baldwin RT (1927). J Chem Educ 4:454CrossRefGoogle Scholar
  5. 5.
    Gail E, Gos S, Kulzer R, Lorosch J, Rubo A, Sauer M, Kellens Reddy J,Steier N,Hasenpusch W (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag Gmbh @ co. KGaA, Weinheim  https://doi.org/10.1002/14356007.a08_159.pub3
  6. 6.
    Sheridan RC, Brown EH (1965). J Org Chem 30:668–669CrossRefGoogle Scholar
  7. 7.
    Piet WHM, Leeuwen V(2004) Homogeneous catalysis: Understanding the art. Kluwer academic publisher, Dordrecht. SBN-1-4020-2000-7Google Scholar
  8. 8.
    Yang M, He J, Hu X, Yan C, Cheng Z (2013). Analyst 138:1758CrossRefGoogle Scholar
  9. 9.
    Ganesh KM, John B, Balaguru R (2013). Sensors Actuators B Chem 183:459–466CrossRefGoogle Scholar
  10. 10.
    Yang M, He J, Hu X, Yan C, Cheng Z (2011). Environ Sci Technol 45:6088–6094CrossRefGoogle Scholar
  11. 11.
    Deshpande NG, Gudage YG, Sharma R, Vyas JC, Kim JB, Lee YD (2009). Sensors Actuators B Chem 138:76–84CrossRefGoogle Scholar
  12. 12.
    Kamble RB, Mathe VL (2008). Sensors Actuators B Chem 131:205–209CrossRefGoogle Scholar
  13. 13.
    Karunagaran B, Periyayya U, Chung SJ, Velumani S, Suh EK (2007). Materials Charetcerization 58:680–684CrossRefGoogle Scholar
  14. 14.
    Toshihiro M, Tomohiro H, Tadastugu M (2000). Sensors Actuators B Chem 69:16–21CrossRefGoogle Scholar
  15. 15.
    Tang Y, Chen W, Li C, Pan L, Dai X, Ma D (2015). Appl Surf Sci 342:191–199CrossRefGoogle Scholar
  16. 16.
    Somayeh FR, Ali AP, Nasser LH (2013). Appl Surf Sci 265:412–417CrossRefGoogle Scholar
  17. 17.
    Madhav G, Ahalapitiya HJ (2012). Solid State Electron 78:159–165CrossRefGoogle Scholar
  18. 18.
    Hosseini SH, Entezami AA (2001). Polym Adv Technol 12:482–493CrossRefGoogle Scholar
  19. 19.
    Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Kong ES, Wei H, Zhang Y (2012). J Mater Chem 22:22488–22495CrossRefGoogle Scholar
  20. 20.
    Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013). Sensors Actuators B Chem 178:485–493CrossRefGoogle Scholar
  21. 21.
    Devi GS, Subrahmanyam VB, Gadkrai SC, Gupta SK (2006). Anal Chem Acta 568:41–46CrossRefGoogle Scholar
  22. 22.
    Thong LV, Loan LTN, Hieu NV (2010). Sensors Actuators B Chem 150:112–119CrossRefGoogle Scholar
  23. 23.
    Zhao M, Yang F, Xue Y, Xiao D, Guo Y (2014). J Mol Model 20:2214CrossRefGoogle Scholar
  24. 24.
    Wang X, Zhi L (2008) Mullen K. Nano Lett 8:323–327CrossRefGoogle Scholar
  25. 25.
    Zabicky J (2009) Patai’s, chemistry of functional groups. Wiley, HobokenGoogle Scholar
  26. 26.
    Fernando J, Mejja-Rivera, Jose G, Alvarado-Rodriguez et al (2015). Struct Chem 26:189–198CrossRefGoogle Scholar
  27. 27.
    Wu G, Huang M (2006). Chem Rev 106:259–2616Google Scholar
  28. 28.
    Jain VK (2005). Bull Mater Sci 28:313–326CrossRefGoogle Scholar
  29. 29.
    Manceron L, Andrews L (1986). J Phys Chem 90:4514–4528CrossRefGoogle Scholar
  30. 30.
    Ozin GA, Power WJ, Upton TH, Goddard WA (1978). J Am Chem Soc 100:4750–4760CrossRefGoogle Scholar
  31. 31.
    Kleiber PD, Wong TH, Yang KH, Chen J (1999). J Chem Phys 110:11798CrossRefGoogle Scholar
  32. 32.
    Lee K, Marceron L, Papai I (1997). J Phys Chem A 101:9650–9659CrossRefGoogle Scholar
  33. 33.
    Durgun E, Ciraci S, Zhou W, Yildirim T (2006). Phys Rev Lett 97:226102CrossRefGoogle Scholar
  34. 34.
    Philips AB, Shivram BS (2008). Phys Rev Lett 100:105505CrossRefGoogle Scholar
  35. 35.
    Wadnerkar N, Kalamse V, Chaudhari A (2010). J Comput Chem 31:1656–1661CrossRefGoogle Scholar
  36. 36.
    Wadnerkar N, Kalamse V, Chaudhari A (2010). Theor Chem Accounts 127:285–292CrossRefGoogle Scholar
  37. 37.
    Wadnerkar N, Kalamse V, Philips AB, Shivram BS, Chaudhari A (2011). Int J Hydrog Energy 36:9727–9732CrossRefGoogle Scholar
  38. 38.
    Wadnerkar N, Kalamse V, Chaudhari A (2012). RSC Adv 2:8497–8501CrossRefGoogle Scholar
  39. 39.
    Kalamse V, Wadnerkar N, Chaudhari A (2010). J Phys Chem C 114:4704–4709CrossRefGoogle Scholar
  40. 40.
    Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012). Int J Hydrog Energy 37:5114–5121CrossRefGoogle Scholar
  41. 41.
    Tavhare P, Kalmse V, Krishna R, Titus E (2016). Int J Hydrog Energy 41:11730–11735CrossRefGoogle Scholar
  42. 42.
    Ingale N, Konda R, Chaudhari A (2018). Int J Quant Chem 118:e25623CrossRefGoogle Scholar
  43. 43.
    Ingale N, Konda R, Chaudhari A (2018). Chem Phys Lett 706:247–254CrossRefGoogle Scholar
  44. 44.
    Gorelsky SI (2009) AOMix:program for molecular orbital analysis; version 6.88. University of Ottawa, OttawaGoogle Scholar
  45. 45.
    Gorelsky SI, Lever ABP (2001). J Organomet Chem 635:187–196CrossRefGoogle Scholar
  46. 46.
    Schelegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002). J Chem Phys 117:8694CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford CTGoogle Scholar
  48. 48.
    Dewar M (1951). Bull Soc Chim Fr 18:C79Google Scholar
  49. 49.
    Chatt J, Duncanson LA (1953). J Chem Soc 0:2939–2947CrossRefGoogle Scholar
  50. 50.
    Chatt J, Duncanson LA (1955). J Chem Soc 0:4456–4460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe Institute of ScienceMumbaiIndia
  2. 2.Department of PhysicsGovt. Vidarbha Institute of Science and HumanitiesAmravatiIndia

Personalised recommendations