The dynamics of solid and liquid phases of water octamer, decamer, and dodecamer

  • Elena D. BelegaEmail author
Original Research


This paper presents the results of dynamic behavior modeling of phase states (solid and liquid) of water clusters ((H2O)8, (H2O)10, and (H2O)12) by molecular dynamics method. The initial configurations of the clusters were cube for octamer, pentagonal prism for decamer, and fused-cube structure for dodecamer. The different analytical interaction potentials (TIPnP (n = 3, 4), SPC, and SPC/E) were applied to the phase dynamics of water octamer to choose the most appropriate potential for the study. The dynamic criteria based on the molecule’s potential energy distribution were applied for identification of solid and liquid phases of decamer and dodecamer. The most probable conformers of decamer and dodecamer in different phases were obtained.


Water octamer Water decamer Water dodecamer Cluster phase state Molecular dynamics Microcanonical ensemble 



EDB express gratitude to professor Yu. V. Novakovskaya for the joint discussion of the work’s results.

Compliance with ethical standards

Conflict of interest

Elena D. Belega, the author of the manuscript, confirms that she has no conflict of interest.


  1. 1.
    Ludwig R (2001) Water: from clusters to the bulk. Chem Int Ed 40:1808–1827CrossRefGoogle Scholar
  2. 2.
    Infantes L, Chisholm J, Motherwell S (2003) Extended motifs from water and chemical functional groups in organic molecular crystals. Cryst Eng Commun 5:480–486CrossRefGoogle Scholar
  3. 3.
    Infantes L, Motherwell S (2002) Water clusters in organic molecular crystals. Cryst Eng Commun 4:454–461CrossRefGoogle Scholar
  4. 4.
    Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112CrossRefGoogle Scholar
  5. 5.
    Cao ML, Wu JJ, Mo HJ, Ye BH (2009) Template trapping and crystal structure of the magic number (H2O)21 cluster in the tetrahedral hole of a nanoscale global ion packed in a face-centered cubic pattern. J Am Chem Soc 131:3458–3459CrossRefGoogle Scholar
  6. 6.
    Lakshminarayanan PS, Suresh E, Ghosh (2006) A hybrid water-chloride structure with discrete undecameric water moieties self-assembled in a heptaprotonated octaamino cryptand. Angew Chem Int Ed 45:3807–3811CrossRefGoogle Scholar
  7. 7.
    Mascal M, Infantes L, Chisholm J (2006) Water oligomers in crystal hydrates—what’s news and what isn’t? Angew Chem Int Ed 45:32–36CrossRefGoogle Scholar
  8. 8.
    Ghosh SK, Bharadwaj PK (2003) Coexistence of water dimer and hexamer clusters in 3D metal−organic framework structures of Ce(III) and Pr(III) with pyridine-2,6-dicarboxylic acid. Inorg Chem 42:8250–8254CrossRefGoogle Scholar
  9. 9.
    Mir MH, Wang L, Wong MW, Vittal JJ (2009) Water helicate (H2O)7, hosted by a diamondoid metal–organic framework. Chem Commun 4539–4541Google Scholar
  10. 10.
    Duan CY, Wei ML, Guo D, He C, Meng QJ (2010) Crystal structures and properties of large protonated water clusters encapsulated by metal−organic frameworks. J Am Chem Soc 132:3321–3330CrossRefGoogle Scholar
  11. 11.
    Sahoo SC, Kundu T, Banerjee R (2011) Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology. J Am Chem Soc 133:17950–17958CrossRefGoogle Scholar
  12. 12.
    Sansam BCR, Anderson KM, Steed JW (2007) Crystal structures and properties of large protonated water clusters encapsulated by metal-organic frameworks. Cryst Growth Des 7:2649–2653CrossRefGoogle Scholar
  13. 13.
    Atwood JL, Barbour LJ, Ness TJ, Raston CL, Raston PL (2001) A well-resolved ice-like (H2O)8 cluster in an organic supramolecular complex. J Am Chem Soc 123:7192–7193CrossRefGoogle Scholar
  14. 14.
    Buck U, Ettischer I, Melzer M, Buch V, Sadlej J (1998) Structure and spectra of three– dimensional (H2O)n clusters, n = 8, 9, 10. Phys Rev Lett 80:2578–2581CrossRefGoogle Scholar
  15. 15.
    Lee HM, Suh SB, Lee JY, Tarakeshwar P, Kim KS (2000) Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J Chem Phys 112:9759–9772CrossRefGoogle Scholar
  16. 16.
    Wales DJ, Hodges MP (1998) Global minima of water clusters (H2O)n, n ≤ 21, described by an empirical potential. Chem Phys Lett 286:65–72CrossRefGoogle Scholar
  17. 17.
    James T, Wales DJ, Hernández–Rojas (2005) Global minima for water clusters (H2O)n, n ≤21 described by a five–site empirical potential. J Chem Phys Lett 415:302–307CrossRefGoogle Scholar
  18. 18.
    Laria D, Rodriguez J, Dellago C, Chandler D (2001) Dynamical aspects of isomerization and melting transitions in [H2O]8. J Phys Chem A 105:2646–2651CrossRefGoogle Scholar
  19. 19.
    Knochenmuss R, Leutwyler S (1992) Structures and vibrational spectra of water clusters in the self–consistent–field approximation. J Chem Phys 96:5233–5244CrossRefGoogle Scholar
  20. 20.
    Belair SD, Francisco JS (2003) Stability of the cubic water octamer. Phys Rev A 67(063206):1Google Scholar
  21. 21.
    Pedulla JM, Jordan KD (1998) Melting behavior of the (H2O)6 and (H2O)8 clusters. Chem Phys 239:593–601CrossRefGoogle Scholar
  22. 22.
    Cole WTC, Farrell JD, Wales DJ, Saykally RJ (2016) Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 mm. Science 352:1194–1197CrossRefGoogle Scholar
  23. 23.
    Tsai CJ, Jordan KD (1993) Theoretical study of small water clusters: low-energy fused cubic structures for (HzO), n = 8, 12, 16, and 20. J Phys Chem 97:5208–5210CrossRefGoogle Scholar
  24. 24.
    Lee HM, Suh SB, Kim KS (2001) Structures, energies, and vibrational spectra of water undecamer and dodecamer: an ab initio study. J Chem Phys 114:10749–10756CrossRefGoogle Scholar
  25. 25.
    Julián G-C, Carignano Marcelo A, Igal S, Marceca Ernesto J, Corti Horacio R (2010) Structural transitions and dipole moment of water clusters (H2O) n = 4–100. J Chem Phys 133:024506CrossRefGoogle Scholar
  26. 26.
    Guimaraes Freddy F, Belchior Jadson C (2002) Global optimization analysis of water clusters (H2O) n (11 ≤ n ≤ 13) through a genetic evolutionary approach. J Chem Phys 116:8327–8333CrossRefGoogle Scholar
  27. 27.
    Berry RS, Jellinek J, Natanson G (1984) Melting of clusters and melting. Phys Rev A 30:919–931CrossRefGoogle Scholar
  28. 28.
    Belega ED, Elyutin PV, Trubnikov DN (2017) Phases in water octamer: molecular point of view. Math Biol Bioinform 12:487–495CrossRefGoogle Scholar
  29. 29.
    Lindemann FA (1910) The calculation of molecular vibration frequencies. Phys Z 11:609–612Google Scholar
  30. 30.
    Wales DJ, Ohmine I (1993) Structure, dynamics, and thermodynamics of model (H2O)8 and (H2O)20 clusters. J Chem Phys 98:7245–7256CrossRefGoogle Scholar
  31. 31.
    Schmidt M. and von Issendorff B (2012) Gas-phase calorimetry of protonated water clusters. J Chem Phys 136: 164307Google Scholar
  32. 32.
    Jorgensen WL, Madura JD (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys 56:1381–1392CrossRefGoogle Scholar
  33. 33.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In intermolecular forces: proceedings of the 14th Jerusalem symposium on quantum chemistry and biochemistry, Jerusalem, Israel, 13–16 April 1981. In: Pullman B (ed) Reidel, DordrechtGoogle Scholar
  34. 34.
    Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271CrossRefGoogle Scholar
  35. 35.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  36. 36.
    Belega ED, Cheremukhin EA, Elyutin PV, Trubnikov DN (2010) On the definition of the microcanonical temperature of small weakly bound molecular clusters. Chem Phys Lett 496:167–171CrossRefGoogle Scholar
  37. 37.
    Belega ED, Tatarenko KA, Trubnikov DN, Cheremukhin EA (2009) The dynamics of water hexamer isomerization. Russ J Phys Chem B 3:404–409CrossRefGoogle Scholar
  38. 38.
    Belega ED, Trubnikov DN, Cheremukhin EA (2015) Melting of the water hexamer. J Struct Chem 56:52–57CrossRefGoogle Scholar
  39. 39.
    Swope WC, Andersen HC, Berens H, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637–649CrossRefGoogle Scholar
  40. 40.
    Ore O (1962) Theory of graphs. Amer Math Soc Colloq Publ V. 38Google Scholar
  41. 41.
    Kalinichev AG, Churakov SV (1999) Thermodynamics and structure of molecular clusters in supercritical water. Chem Phys Lett 302:411–417CrossRefGoogle Scholar
  42. 42.
    Belega ED, Elyutin PV, Trubnikov DN (2018) On the problem of criteria for phase transitions in water clusters (a hexamer and octamer example). J Struct Chem 59:1381–1386CrossRefGoogle Scholar
  43. 43.
    Djikaev YS, Ruckenstein E (2011) The variation of the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface and its effect on hydrophobic interactions. Curr Opin Colloid Interface Sci 16:272–284CrossRefGoogle Scholar
  44. 44.
    Novakovskaya YV, Bednyakov AS (2016) Consistent transfer of protons in molecular rings of water: origination of H3O+ and OH– ions. Dokl Chem 471:307–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussian Federation

Personalised recommendations