Advertisement

Quantum chemical study on isomerization and transformation of hexabromocyclododecanes

  • Haijie CaoEmail author
  • Shijie Wu
  • Maoxia HeEmail author
Original Research
  • 30 Downloads

Abstract

Hexabromocyclododecanes (HBCDs) have been frequently detected in environment. The isomerization between HBCDs and thermodynamic properties of unimolecular and bimolecular decomposition reactions of (−)-α-HBCD and (−)-γ-HBCD have been investigated using the quantum chemical method. The results show that isomerization via 1,2-shift of Br atoms occurs between the (−)-α/(−)-γ, (+)-α/(+)-γ, and (+)-β/(−)-β counterparts of HBCDs. Self-decomposition of HBCDs to pentabromocyclododecenes and HBr progresses slowly at low temperature but becomes competitive with the isomerization reactions at high temperature. The generated products are also toxic pollutants to the aquatic organisms. The reaction of two commonly detected HBCDs, (−)-γ-HBCD and (−)-α-HBCD, with OH radical and H atom have been studied. (−)-γ-HBCD has bigger rate constants in the reaction with OH radical and H atom than (−)-α-HBCD all over studied temperature. After a series of unimolecular or bimolecular reactions, the formed pentabrominated intermediate can decompose into ethane, vinyl bromide, and 1,2-dibromoethylene after sufficient heat adsorption.

Keywords

HBCDs Isomerization Decomposition Rate constants Toxicity 

Notes

Funding information

This work was supported financially by the National Natural Science Foundation of China (21477065, 21077067, and 21103147), the China Postdoctoral Science Foundation (2017 M610409), the Taishan Scholars Advantageous and Distinctive Discipline Program, and the Taishan Scholar Program of Shandong Province, China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1244_MOESM1_ESM.docx (2.3 mb)
ESM 1 The additional information, including the geometry structures, relative energy data, the CTST rate constants as noted in the text, are shown in Supplementary Material. (DOCX 2389 kb)

References

  1. 1.
    Xu W, Wang X, Cai Z (2013) Analytical chemistry of the persistent organic pollutants identified in the Stockholm convention: a review. Anal Chim Acta 790:1–13CrossRefGoogle Scholar
  2. 2.
    Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, De Boer J (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40(12):3679–3688CrossRefGoogle Scholar
  3. 3.
    Gorga M, Martinez E, Ginebreda A, Eljarrat E, Barcelo D (2013) Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from catalonia (Spain). Sci Total Environ 444:51–59CrossRefGoogle Scholar
  4. 4.
    Hong SH, Shim WJ, Han GM, Ha SY, Jang M, Rani M, Hong S, Yeo GY (2014) Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Sci Total Environ 470:1463–1470CrossRefGoogle Scholar
  5. 5.
    Kalachova K, Hradkova P, Lankova D, Hajslova J, Pulkrabova J (2012) Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Sci Total Environ 441:182–193CrossRefGoogle Scholar
  6. 6.
    Malarvannan G, Isobe T, Covaci A, Prudente M, Tanabe S (2013) Accumulation of brominated flame retardants and polychlorinated biphenyls in human breast milk and scalp hair from the Philippines: levels, distribution and profiles. Sci Total Environ 442:366–379CrossRefGoogle Scholar
  7. 7.
    Ni HG, Zeng H (2013) HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci Total Environ 458-460:15–29CrossRefGoogle Scholar
  8. 8.
    Jang M, Shim WJ, Han GM, Rani M, Song YK, Hong SH (2017) Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut 231:785–794CrossRefGoogle Scholar
  9. 9.
    Cao XH, Lu YL, Zhang YQ, Khan K, Wang CC, Baninla Y (2018) An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China. Environ Pollut 236:283–295CrossRefGoogle Scholar
  10. 10.
    Canbaz D, Logiantara A, Hamers T, van Ree R, van Rijt LS (2016) Indoor pollutant hexabromocyclododecane has a modest immunomodulatory effect on house dust mite induced allergic asthma in mice. Environ Sci Technol 50(1):405–411CrossRefGoogle Scholar
  11. 11.
    Zhang H, Kuo YY, Gerecke AC, Wang J (2012) Co-release of hexabromocyclododecane (HBCD) and nano- and microparticles from thermal cutting of polystyrene foams. Environ Sci Technol 46(20):10990–10996CrossRefGoogle Scholar
  12. 12.
    Zhu ZC, Chen SJ, Zheng J, Tian M, Feng AH, Luo XJ, Mai BX (2014) Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China. Sci Total Environ 481:47–54CrossRefGoogle Scholar
  13. 13.
    Kajiwara N, Takigami H (2013) Emission behavior of hexabromocyclododecanes and polybrominated diphenyl ethers from flame-retardant-treated textiles. Environ Sci Process Impacts 15(10):1957–1963CrossRefGoogle Scholar
  14. 14.
    Ichihara M, Yamamoto A, Kakutani N, Sudo M, Takakura K (2017) A bayesian approach for estimating hexabromocyclododecane (HBCD) diastereomer compositions in water using data below limit of quantification. Environ Sci Pollut Res Int 24(3):2667–2674CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Sun H, Liu F, Dai Y, Qin X, Ruan Y, Zhao L, Gan Z (2013) Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure. Chemosphere 93(8):1561–1568CrossRefGoogle Scholar
  16. 16.
    Sun YX, Luo XJ, Mo L, He MJ, Zhang Q, Chen SJ, Zou FS, Mai BX (2012) Hexabromocyclododecane in terrestrial passerine birds from e-waste, urban and rural locations in the Pearl River Delta, South China: levels, biomagnification, diastereoisomer- and enantiomer-specific accumulation. Environ Pollut 171:191–198CrossRefGoogle Scholar
  17. 17.
    Haukas M, Mariussen E, Ruus A, Tollefsen KE (2009) Accumulation and disposition of hexabromocyclododecane (HBCD) in juvenile rainbow trout (oncorhynchus mykiss). Aquat Toxicol 95(2):144–151CrossRefGoogle Scholar
  18. 18.
    Feng AH, Chen SJ, Chen MY, He MJ, Luo XJ, Mai BX (2012) Hexabromocyclododecane (HBCD) and tetrabromobisphenol a (TBBPA) in riverine and estuarine sediments of the pearl river delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD. Mar Pollut Bull 64(5):919–925CrossRefGoogle Scholar
  19. 19.
    Li H, Zhang Q, Wang P, Li Y, Lv J, Chen W, Geng D, Wang Y, Wang T, Jiang G (2012) Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay Area, East China. J Environ Monit 14(10):2591–2597CrossRefGoogle Scholar
  20. 20.
    Davis JW, Gonsior S, Marty G, Ariano J (2005) The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic aediments. Water Res 39(6):1075–1084CrossRefGoogle Scholar
  21. 21.
    Le TT, Son MH, Nam IH, Yoon H, Kang YG, Chang YS (2017) Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. J Hazard Mater 325:82–89CrossRefGoogle Scholar
  22. 22.
    Ukisu Y (2017) Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol. Chemosphere 179:179–184CrossRefGoogle Scholar
  23. 23.
    Arita S, Yamaguchi K, Motokucho S, Nakatani H (2017) Selective decomposition of hexabromocyclododecane in polystyrene with a photo and thermal hybrid treatment system. Polym Degrad Stab 143:130–135CrossRefGoogle Scholar
  24. 24.
    Koppen R, Becker R, Jung C, Nehls I (2008) On the thermally induced isomerisation of hexabromocyclododecane stereoisomers. Chemosphere 71(4):656–662CrossRefGoogle Scholar
  25. 25.
    Harrad S, Abdallah MA, Covaci A (2009) Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust. Environ Int 35(3):573–579CrossRefGoogle Scholar
  26. 26.
    Heeb NV, Zindel D, Schweizer WB, Lienemann P (2012) 2,5,6,9,10-Pentabromocyclododecanols (Pbcdohs): a new class of HBCD transformation products. Chemosphere 88(5):655–662CrossRefGoogle Scholar
  27. 27.
    Zhao YY, Zhang XH, Sojinu OS (2010) Thermodynamics and photochemical properties of alpha, beta, and gamma-hexabromocyclododecanes: a theoretical study. Chemosphere 80(2):150–156CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li H, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr PJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Inc, WallingfordGoogle Scholar
  29. 29.
    Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108(14):2715–2719CrossRefGoogle Scholar
  30. 30.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161CrossRefGoogle Scholar
  31. 31.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527CrossRefGoogle Scholar
  32. 32.
    Barker JR (2001) Multiple-well, multiple-path unimolecular reaction systems. I. Multiwell computer program suite. In J Chem Kinet 33(4):232–245CrossRefGoogle Scholar
  33. 33.
    Barker J, Ortiz N, Preses J, Lohr L, Maranzana A, Stimac P, Nguyen L (2014) Multiwell-2014 software. University of Michigan, Ann ArborGoogle Scholar
  34. 34.
    Conn JB, Kistiakowsky GB, Smith EA (1939) Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes. J Am Chem Soc 61(7):1868–1876CrossRefGoogle Scholar
  35. 35.
    Heeb NV, Schweizer WB, Kohler M, Gerecke AC (2005) Structure elucidation of hexabromocyclododecanes—a class of compounds with a complex stereochemistry. Chemosphere 61(1):65–73CrossRefGoogle Scholar
  36. 36.
    Heeb NV, Schweizer WB, Mattrel P, Haag R, Gerecke AC, Kohler M, Schmid P, Zennegg M, Wolfensberger M (2007) Solid-state conformations and absolute configurations of (+) and (−) alpha-, beta-, and gamma-hexabromocyclododecanes (Hbcds). Chemosphere 68(5):940–950CrossRefGoogle Scholar
  37. 37.
    Heeb NV, Schweizer WB, Mattrel P, Haag R, Kohler M (2007) Crystal structure analysis of enantiomerically pure (+) and (−) beta-hexabromocyclododecanes. Chemosphere 66(8):1590–1594CrossRefGoogle Scholar
  38. 38.
    Teng M, Jin J, Fu Q, Cai Y, Chen J, Wei F (2013) Selective separation of polychlorinated naphthalene (Pcns), hexabromocyclododecanes (Hbcds) and tetrabromobisphenol a (TBBPA) in soil matrices. Chin Sci Bull 58(4–5):500–506CrossRefGoogle Scholar
  39. 39.
    Wang T, Han S, Ruan T, Wang Y, Feng J, Jiang G (2013) Spatial distribution and inter-year variation of hexabromocyclododecane (HBCD) and tris-(2,3-Dibromopropyl) isocyanurate (TBC) in farm soils at a Peri-urban region. Chemosphere 90(2):182–187CrossRefGoogle Scholar
  40. 40.
    Rawn DFK, Ryan JJ, Sadler AR, Sun WF, Weber D, Laffey P, Haines D, Macey K, Van Oostdam J (2014) Brominated flame retardant concentrations in sera from the Canadian health measures survey (CHMS) from 2007 to 2009. Environ Int 63:26–34CrossRefGoogle Scholar
  41. 41.
    Heeb NV, Schweizer WB, Mattrel P, Haag R, Kohler M, Schmid P, Zennegg M, Wolfensberger M (2008) Regio- and stereoselective isomerization of hexabromocyclododecanes (Hbcds): kinetics and mechanism of Beta-HBCD racemization. Chemosphere 71(8):1547–1556CrossRefGoogle Scholar
  42. 42.
    Luo XJ, Ruan W, Zeng YH, Liu HY, Chen SJ, Wu JP, Mai BX (2013) Trophic dynamics of hexabromocyclododecane diastereomers and enantiomers in fish in a laboratory feeding study. Environ Toxicol Chem 32(11):2565–2570PubMedGoogle Scholar
  43. 43.
    Zhang Y, Sun H, Ruan Y (2014) Enantiomer-specific accumulation, depuration, metabolization and isomerization of hexabromocyclododecane (HBCD) diastereomers in mirror carp from water. J Hazard Mater 264:8–15CrossRefGoogle Scholar
  44. 44.
    Heeb NV, Zindel D, Geueke B, Kohler HP, Lienemann P (2012) Biotransformation of hexabromocyclododecanes (Hbcds) with linb—an HCH-converting bacterial enzyme. Environ Sci Technol 46(12):6566–6574CrossRefGoogle Scholar
  45. 45.
    Wagoner ER, Baumberger CP, Peverly AA, Peters DG (2014) Electrochemical reduction of 1,2,5,6,9,10-hexabromocyclododecane at carbon and silver cathodes in dimethylformamide. J Electroanal Chem 713:136–142CrossRefGoogle Scholar
  46. 46.
    EPA U (2012) Estimation programs interface suite™ for microsoft® windows, V 4.11. United States environmental protection agency, Washington, DCGoogle Scholar
  47. 47.
    Heeb NV, Schweizer WB, Mattrel P, Haag R, Gerecke AC, Schmid P, Zennegg M, Vonmont H (2008) Regio- and stereoselective isomerization of hexabromocyclododecanes (Hbcds): kinetics and mechanism of gamma- to alpha-HBCD isomerization. Chemosphere 73(8):1201–1210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials for Energy and Environment, School of Materials Science and EngineeringQingdao UniversityQingdaoPeople’s Republic of China
  2. 2.Environment Research InstituteShandong UniversityJinanPeople’s Republic of China

Personalised recommendations