Advertisement

Thermodynamic and kinetic studies of the retro-Diels-Alder reaction of 1,4-cyclohexadiene, 4H-pyran 4H-thiopyran, 1,4-dioxine, and 1,4-dithiine: a theoretical investigation

  • Elham Sheikh Ansari
  • Reza Ghiasi
  • Ali Forghaniha
Original Research
  • 31 Downloads

Abstract

Theoretical studies of the retro-Diels-Alder reaction of 1,4-cyclohexadiene, 4H-pyran 4H-thiopyran, 1,4-dioxine, and 1,4-dithiine in the gas phase were carried out using DFT methods at the B3LYP/6–311 + G(d,p) levels of theory. The barrier height (ΔE) and thermodynamic parameters (ΔG and ΔH) were estimated. The progress of the reactions was followed by means of the Wiberg bond indices. The synchronicity values of the reactions were calculated. The kinetic parameters were calculated for both reactions in 300–1200-K temperature range. Also, fitted equations to the gas phase Arrhenius equation were determined. Effect of the character and number of heteroatoms were illustrated on the thermodynamic and kinetic parameters.

Keywords

1,4-cyclohexadiene retro-Diels-Alder reaction DFT computational methods Reaction Mechanism Transition state structure Wiberg bond index 

References

  1. 1.
    Fringuelli F, Taticchi A (2002) The Diels-Alder reaction. Selected Practical Methods. John Wiley & Sons, New YorkGoogle Scholar
  2. 2.
    Fleming I (1999) Pericyclic reactions. Oxford University Press Inc., New YorkGoogle Scholar
  3. 3.
    Nicolau KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002). Angew Chem Int Ed 41:1668CrossRefGoogle Scholar
  4. 4.
    Diels O, Alder K (1928). Justus Liebigs Ann Chem 98:460Google Scholar
  5. 5.
    Carruthers W (1978) Some Modern Methods of Organic SynthesisSecond edn. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Carruthers W (1990) Ycloaddition Reactions in Organic Synthesis. Pergamon, OxfordGoogle Scholar
  7. 7.
    Geerlings P, Proft FD, Langenaeker W (2003). Chem Rev 103:1793CrossRefGoogle Scholar
  8. 8.
    Ess DH, Jones GO, Houk KN (2006). Adv Synth Catal 348:2337CrossRefGoogle Scholar
  9. 9.
    Ormachea CM, Mancini PME, Kneeteman MN, Domingo LR (2015). Comput Theor Chem 1072:37CrossRefGoogle Scholar
  10. 10.
    Sarotti AM (2014). Org Biomol Chem 12:187CrossRefGoogle Scholar
  11. 11.
    Mancinia PME, Kneeteman MN, Cainelli M, Ormachea CM, Domingo LR (2017). J Mol Struct 1147:155CrossRefGoogle Scholar
  12. 12.
    Rickborn B (1998) The retro Diels-Alder reaction. Part I. C-C dienophiles in Organic Reactions. In: Al LP e (ed), vol Vol. 52. John Wiley and Sons, Inc, New YorkGoogle Scholar
  13. 13.
    Ramirez B, Cordova T, Ruette F, Chuchani G (2015). Comput Theor Chem 1067:103CrossRefGoogle Scholar
  14. 14.
    Tsang W (1965). J Chem Phys 42:1805CrossRefGoogle Scholar
  15. 15.
    Sakai T, Nakatani T, Toshiaki N, Kunugi T (1972). Ind Eng Chem Fundam 11:529CrossRefGoogle Scholar
  16. 16.
    Lewis DK, Brandt B, Crockford L, Glenar DA, Rauscher G, Rodriguez J, Baldwin JE (1993). J Am Chem Soc 115:11728CrossRefGoogle Scholar
  17. 17.
    Lewis D, Glenar DA, Hughes S, Kalra BL, Schlier J, Shukla R, Baldwin JE (2001). J Am Chem Soc 123:996CrossRefGoogle Scholar
  18. 18.
    Abu-Laban M, Kumal RR, Casey J, Becca J, Hayes DJ (2018). J Colloid Interface Sci 526:312CrossRefGoogle Scholar
  19. 19.
    Lyu B, Cha W, Mao T, Wu Y, Qian H, Zhou Y, Chen X, Zhang S, Liu L, Yang G, Lu Z, Zhu Q, Ma H (2015). ACS Appl Mater Interfaces 7:6254CrossRefGoogle Scholar
  20. 20.
    Shrivastav G, Khan TS, Agarwal M, Haider MA (2018). J Phys Chem C 122:11599CrossRefGoogle Scholar
  21. 21.
    Yang K, Dang Q, Cai P-J, Gao Y, Yu Z-X, Bai X (2017). J Org Chem 82:2336CrossRefGoogle Scholar
  22. 22.
    Pinelo L, Gudmundsdottir AD, Ault BS (2013). J Phys Chem A 117:4174CrossRefGoogle Scholar
  23. 23.
    Darensbourg DJ, Chung W-C, Yeung AD, Luna M (2015). Macromolecules 48:1679CrossRefGoogle Scholar
  24. 24.
    Krier JM, Komvopoulos K, Somorjai GA (2016). J Phys Chem C 120:8246CrossRefGoogle Scholar
  25. 25.
    Gomez N, Hénon E, Bohr F, Devolder P (2001). J Phys Chem A 105:11204CrossRefGoogle Scholar
  26. 26.
    Gao Y, DeYonker NJ, Garrett EC, Wilson AK, Cundari TR, Marshall P (2009). J Phys Chem A 113:6955CrossRefGoogle Scholar
  27. 27.
    Benson SW, Shaw R (1967). Trans Faraday Soc 63:985CrossRefGoogle Scholar
  28. 28.
    Rice FO, Stallbaumer AL (1942). J Am Chem Soc 64:1527CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalman G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CTGoogle Scholar
  30. 30.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980). J Chem Phys 72:650CrossRefGoogle Scholar
  31. 31.
    McLean AD, Chandler GS (1980). J Chem Phys 72:5639CrossRefGoogle Scholar
  32. 32.
    Curtiss LA, McGrath MP, Blandeau J-P, Davis NE, Binning RC, Radom JL (1995). J Chem Phys 103:6104CrossRefGoogle Scholar
  33. 33.
    Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  34. 34.
    Barone V (2005). J Chem Phys 122:014108CrossRefGoogle Scholar
  35. 35.
    Barone V, Manichino C (1995). J Mol Struct 339:365CrossRefGoogle Scholar
  36. 36.
    Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899CrossRefGoogle Scholar
  37. 37.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988). NBO (Version 3.1)Google Scholar
  38. 38.
    Fukui K (1981). Acc Chem Res 14:363CrossRefGoogle Scholar
  39. 39.
    Fukui K (1970). J Phys Chem 74:4161CrossRefGoogle Scholar
  40. 40.
    Gonzalez C, Schlegel HB (1990). J Phys Chem 94:5523Google Scholar
  41. 41.
    Gonzalez C, Schlegel HB (1989). J Chem Phys 90:2154CrossRefGoogle Scholar
  42. 42.
    Miyoshi A (2010) Gaussian Post Processor(GPOP). University of Tokyo, TokyoGoogle Scholar
  43. 43.
    Garrett BC, Truhlar DG (1979). J Phys Chem 83:2921CrossRefGoogle Scholar
  44. 44.
    Shavitt I (1959). J Chem Phys 31:1359CrossRefGoogle Scholar
  45. 45.
    Miessler GL, Fischer PJ, Tarr DA (2014) Inorganic ChemistryFifth edn. Pearson Education, IncGoogle Scholar
  46. 46.
    Gavnholt J, Olsen T, Engelund M, Schiøtz J (2008). Phys Rev B 78:075441CrossRefGoogle Scholar
  47. 47.
    Parr RG, Pearson RG (1983). J Am Chem Soc 105:7512CrossRefGoogle Scholar
  48. 48.
    Yang W, Parr RG (1985). Proc Natl Acad Sci U S A 82:6723CrossRefGoogle Scholar
  49. 49.
    Chen X-F, Bu J-H, Yu T, Lai WP, Ge Z-X (2013). Commun Comput Chem 1:118Google Scholar
  50. 50.
    Wiberg KB (1968). Tetrahedron 24:1083CrossRefGoogle Scholar
  51. 51.
    Moyano A, Perica’s MA, EV (1995). J Organomet Chem 54:573CrossRefGoogle Scholar
  52. 52.
    Manoharan M, Venuvanalingam P (1997). J Mol Struct (THEOCHEM) 394:41CrossRefGoogle Scholar
  53. 53.
    Manoharan M, Venuvanalingam P (1997). J Chem Soc Perkin Trans 1799Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elham Sheikh Ansari
    • 1
  • Reza Ghiasi
    • 2
  • Ali Forghaniha
    • 1
  1. 1.Department of Chemistry, Faculty of Science, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Department of Chemistry, Faculty of Science, East Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations