Advertisement

Silver-chalcogen frameworks: crystal and electronic structure of [Ag3S](NO3) and a comparison with [Ag4Te](SO4)

  • Tatiana A. Shestimerova
  • Alexey N. Kuznetsov
  • Andrei V. ShevelkovEmail author
Original Research
  • 18 Downloads

Abstract

Crystal and electronic structure of silver-containing metal-inorganic frameworks [Ag3S](NO3) and [Ag4Te](SO4) have been examined. For [Ag3S](NO3), the crystal structure has been re-determined from X-ray single crystal diffraction data and refined to R = 2.7% in order to determine the exact position of the nitrate anion. It is shown that the main structural feature of [Ag3S](NO3) and [Ag4Te](SO4) is the framework based on the combination of silver-chalcogen and silver-silver interactions, with guest oxoanions filling the cavities. Effectively, ionic interactions between guest anions and the framework differ significantly from the interactions within frameworks themselves, where the bonding analysis shows the tendency for more covalent bonding and indicates that the bonding patterns are consistent with what is regarded as metallophilic interactions.

Keywords

Silver Solid-state structures Frameworks compounds Electronic structure Metallophilic interactions 

Notes

Acknowledgments

Authors wish to thank Dr. D. I. Davlyatshin for the help with IR spectroscopy experiments. The X-ray study was supported by the Lomonosov Moscow State University Program of Development. The use of the Lomonosov Moscow State University Supercomputer Center is kindly acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci.  https://doi.org/10.1039/c2ee22989g CrossRefGoogle Scholar
  2. 2.
    Ding N, Armatas GS, Kanatzidis MG (2010). J Am Chem Soc 132:6728CrossRefGoogle Scholar
  3. 3.
    Voroshilov YV, Khudolii VA, Pan’ko VV (1996). Russ J Inorg Chem 41:274–280Google Scholar
  4. 4.
    Beck J, Hedderich S (2000). J Solid State Chem 151:73–76CrossRefGoogle Scholar
  5. 5.
    Zou JP, Guo GC, Gou SP, Lu YB, Wu KJ, Wang MS, Huang JS (2007). Dalton Trans 42:4854–4858CrossRefGoogle Scholar
  6. 6.
    Minets IV, Voroshilov YV, Pan’ko VV, Khudolii VA (2004). J Alloys Compd 365:121–125CrossRefGoogle Scholar
  7. 7.
    Shestimerova TA, Shevelkov AV (2018). Russ Chem Rev 87(1):28–48CrossRefGoogle Scholar
  8. 8.
    Keller HL, Mueller-Buschbaum H (1974). Z Anorg Allg Chem 408:205–208CrossRefGoogle Scholar
  9. 9.
    Shatruk MM, Kovnir KA, Shevelkov AV, Popovkin BA (2000). Angew Chem Int Ed 39:2508–2509CrossRefGoogle Scholar
  10. 10.
    Bergerhoff G (1964). Angew Chem 76:697–704CrossRefGoogle Scholar
  11. 11.
    Braustein J, Blander M, Lindgren RM (1962). J Am Chem Soc 84:1529–1533CrossRefGoogle Scholar
  12. 12.
    Lieser KH (1960). Z Anorg Allg Chem 305:133–137CrossRefGoogle Scholar
  13. 13.
    Schultze-Rhonhof E, Bergerhoff G (1969). Acta Crystallogr Sect B 25:2645–2648CrossRefGoogle Scholar
  14. 14.
    Persson K (1979). Acta Crystallogr Sect B 35:302–306CrossRefGoogle Scholar
  15. 15.
    Shestimerova TA, Mitiaev AS, Davliatshin DI, Shevelkov AV (2010). Z Anorg Allg Chem 636:1941–1946CrossRefGoogle Scholar
  16. 16.
    Shestimerova TA, Oleneva OS, Mitiaev AS, Bykov MA, Davliatshin DI, Shevelkov AV (2009). Z Anorg Allg Chem 635:732–736CrossRefGoogle Scholar
  17. 17.
    Pitzschke D, Ĉurda J, Cakmak G, Jansen M (2008). Z Anorg Allg Chem 634:1907–1910CrossRefGoogle Scholar
  18. 18.
    Schultze-Rhonhof E (1974). Acta Crystallogr Sect B 30:2553–2558CrossRefGoogle Scholar
  19. 19.
    Pitzschke D, Ĉurda J, Jansen M (2009). Z Naturforsch B 64:891–895CrossRefGoogle Scholar
  20. 20.
    Persson K, Holmberg B (1977). Acta Crystallogr Sect B 33:3768–3772CrossRefGoogle Scholar
  21. 21.
    Adams S, Preusser A (1999). Acta Crystallogr Sect C 55:1741–1743CrossRefGoogle Scholar
  22. 22.
    Ĉurda J, Peters EM, Klein W, Jansen M (2001). Z Kristallogr New Cryst Struct:216–180Google Scholar
  23. 23.
    Oleneva OS, Kirsanova MA, Shestimerova TA, Abramchuk NS, Davliatshin DI, Bykov MA, Dikarev EV, Shevelkov AV (2008). J Solid State Chem 181:37–44CrossRefGoogle Scholar
  24. 24.
    Suh IK, Ohta H, Waseda Y (1988). J Mater Sci 23:757–760CrossRefGoogle Scholar
  25. 25.
    Jansen M (1987). Angew Chem Int Ed Eng 26:1098–1110CrossRefGoogle Scholar
  26. 26.
    Bergerhoff G (1959). Z Anorg Allg Chem 299:328–337CrossRefGoogle Scholar
  27. 27.
    Hirsch H (1979). J Appl Crystallogr 12:129–130CrossRefGoogle Scholar
  28. 28.
    Shestimerova TA, Mityaev AS, Davlyatshin DI, Shevelkov AV (2012). Mosc Univ Chem Bull 67:13–18CrossRefGoogle Scholar
  29. 29.
    ELK, an all-electron full-potential linearised augmented-plane wave (FP-LAPW) code, ver. 1.4.22. http://elk.sourceforge.net
  30. 30.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008). Phys Rev Lett 100:136406CrossRefGoogle Scholar
  31. 31.
    Bader RFW (1990) In: atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  32. 32.
    Becke AD, Edgecombe KE (1990). J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  33. 33.
    Kohout M, Savin A (1996). Int J Quantum Chem 60:875–882CrossRefGoogle Scholar
  34. 34.
    Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, Schnering HG (1992). Angew Chem Int Ed Eng 31:187–188CrossRefGoogle Scholar
  35. 35.
    Kohout M (2004). Int J Quantum Chem 97:651–658CrossRefGoogle Scholar
  36. 36.
    Kohout M (2007). Faraday Discuss 135:43–54CrossRefGoogle Scholar
  37. 37.
    Wagner FR, Bezugly V, Kohout M, Grin Y (2007). Chem Eur J 13:5724–5741CrossRefGoogle Scholar
  38. 38.
    Kohout M (2011) DGrid, ver. 4.6, RadebeulGoogle Scholar
  39. 39.
    ParaView 3.98.0, Open Source Scientific Visualization. www.paraview.org
  40. 40.
    Norby P, Dinnebier RE, Fitch AN (2002). J Am Ceram Soc 41:3628–3637Google Scholar
  41. 41.
    Shen ZX, Kuok MH, Tang SH, Sherman WF (1992). Spectrochim Acta 10:1317–1322CrossRefGoogle Scholar
  42. 42.
    Kohout M, Wagner FR, Grin Y (2002). Theor Chem Accounts 108:150–156CrossRefGoogle Scholar
  43. 43.
    Jansen M (1980). J Less Common Met 76:285–292CrossRefGoogle Scholar
  44. 44.
    Mehrotra PK, Hoffmann R (1978). Inorg Chem 17:2187–2189CrossRefGoogle Scholar
  45. 45.
    Sculfort S, Braunstein P (2011). Chem Soc Rev 40:2741–2760CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations