Polycaprolactone nanocomposite systems used to deliver ifosfamide anticancer drug: molecular dynamics simulations

  • Azin Mazloom-Jalali
  • Zahra Shariatinia
Original Research


Molecular dynamics (MD) simulations were accomplished on polycaprolactone (PCL) nanocomposite systems composed of hydroxyapatite (HA) nanoparticles (0–4%) to deliver ifosfamide (IF) anticancer drug in order to achieve the most suitable drug delivery system (DDS). It was shown that the free volume (FV) was the greatest for the PCL-HA2-IF whereas the lowest value was measured for the PCL-HA0-IF. The fractional free volume (FFV) values varied similar to the FV values so that the PCL-HA2-IF had the maximum FFV (22.48%) but PCL-HA0-IF illustrated the minimum FFV (17.89%). The smallest interchain distances measured for the PCL-HA2-IF established that the greatest intermolecular interactions occurred in the PCL-HA2-IF. The highest diffusion coefficient (0.1267 × 10−4 cm2/s) was obtained for the PCL-HA0-IF whereas the lowest one was achieved for the PCL-HA2-IF (0.0688 × 10−4 cm2/s) that confirmed the drug diffusion was the slowest/most controlled in the PCL-HA2-IF which would bring about the most effective drug delivery.


Molecular dynamics simulation Polycaprolactone polymeric nanocomposite Drug delivery system Ifosfamide anticancer drug Diffusion coefficient 



The authors would like to appreciatively express their thanks to the Research Office of Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, for the financial support of this work. Also, they are grateful to the High Performance Computing Cluster of Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, for affording the computational facilities (software and hardware) to accomplish the MD simulations. The authors also thank Dr. Jakub Krajniak for his helpful comments.

Compliance with ethical standards

Conflicts of interest

The authors do not have any personal or financial conflicts of interest.

Supplementary material

11224_2018_1233_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1603 kb)


  1. 1.
    Aftab S, Shah A, Nadhman A, Kurbanoglu S, Ozkan SA, Dionysiou DD, Shukla SS, Aminabhavi TM (2018) Nanomedicine: an effective tool in cancer therapy. Int J Pharm 540:132–149CrossRefGoogle Scholar
  2. 2.
    S. Gillessen, G. Attard, T. M.Beer, H. Beltran, A. Bossi, R. Bristow, B. Carver, D. Castellano, B.H. Chung, N. Clarke, G. Daugaard, I.D. Davis, J. Bono, R. Borges dos Reis, C.G. Drake, R.E. Eleni Efstathiou, C.P. Evans, A. Omlin, Management of patients with advanced prostate cancer: the report of the Advanced Prostate Cancer Consensus Conference APCCC 2017, Eur Urol 73 (2018) 178–211Google Scholar
  3. 3.
    Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H (2017) The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: synthesis, characterization and cytotoxicity studies. Colloid Surf B Biointerfaces 158:589–601CrossRefGoogle Scholar
  4. 4.
    Afkham A, Aghebati-Maleki L, Siahmansouri H, Sadreddini S, Ahmadi M, Dolati S, Manafi Afkham N, Akbarzadeh P, Jadidi-Niaragh F, Younesi V, Yousefi M (2018) Chitosan (CMD)-mediated co-delivery of SN38 and snail-specific siRNA as a useful anticancer approach against prostate cancer. Pharm Rep 70:418–425CrossRefGoogle Scholar
  5. 5.
    Vatanparast M, Shariatinia Z (2018) AlN and AlP doped graphene quantum dots as novel drug delivery systems for 5-fluorouracil drug: theoretical studies. J Fluor Chem 211:81–93CrossRefGoogle Scholar
  6. 6.
    Nikfar Z, Shariatinia Z (2017) Phosphate functionalized (4,4)-armchair CNTs as novel drug delivery systems for alendronate and etidronate anti-osteoporosis drugs. J Mol Graph Model 76:86–105CrossRefGoogle Scholar
  7. 7.
    Nikfar Z, Shariatinia Z (2017) DFT computational study on the phosphate functionalized SWCNTs as efficient drug delivery systems for anti-osteoporosis zolendronate and risedronate drugs. Phys E 91:41–59CrossRefGoogle Scholar
  8. 8.
    Vatanparast M, Shariatinia Z (2018) Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Struct Chem 29:1427–1448CrossRefGoogle Scholar
  9. 9.
    Shariatinia Z, Arabzadeh N, Abdous M (2011) Ab initio calculations on the hydrogen bonding interactions among pseudoephedrinium cation isomers and methacrylic acid. Main Group Chem 10:1–16Google Scholar
  10. 10.
    Shariatinia Z, Erben MF, Védova COD (2012) DFT calculations on the hydrogen bonding interactions between adrenaline and trimethoxysilylpropylamine. Main Group Chem 11:275–284Google Scholar
  11. 11.
    Shariatinia Z, Erben MF, Védova COD, Abdous M, Azodi S (2011) Hydrogen bonding interactions between α-, β-glucose, and methacrylic acid. Struct Chem 22:1347–1352CrossRefGoogle Scholar
  12. 12.
    Shariatinia Z, Shahidi S (2014) A DFT study on the physical adsorption of cyclophosphamide derivatives on the surface of fullerene C60 nanocage. J Mol Graph Model 52:71–81CrossRefGoogle Scholar
  13. 13.
    Shariatinia Z, Zahraee Z (2017) Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J Colloid Interface Sci 501:60–76CrossRefGoogle Scholar
  14. 14.
    Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan-polyethylene oxidenanocomposite mats containing ZIF-8 nanoparticles. Int J Biol Macromol 91:778–788CrossRefGoogle Scholar
  15. 15.
    Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan–polyethylene oxidenanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym 140:287–298CrossRefGoogle Scholar
  16. 16.
    Fazli Y, Shariatinia Z, Kohsari I, Azadmehr A, Pourmortazavi SM (2016) A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs. Int J Pharm 513:636–647CrossRefGoogle Scholar
  17. 17.
    Sahoo S, Sasmal A, Nanda R, Phani AR, Nayak PL (2010) Synthesis of chitosan–polycaprolactone blend for control delivery of ofloxacin drug. Carbohydr Polym 79:106–113CrossRefGoogle Scholar
  18. 18.
    Shariatinia Z, Nikfar Z (2013) Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs. Int J Biol Macromol 60:226–234CrossRefGoogle Scholar
  19. 19.
    Shariatinia Z, Nikfar Z, Gholivand K, Abolghasemi Tarei S (2015) Antibacterial activities of novel nanocomposite biofilms of chitosan/phosphoramide/Ag NPs. Polym Compos 36:454–466CrossRefGoogle Scholar
  20. 20.
    Fazli Y, Shariatinia Z (2017) Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous mats. Mater Sci Eng C 71:641–652CrossRefGoogle Scholar
  21. 21.
    Shariatinia Z, Fazli M (2015) Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocolloid 46:112–124CrossRefGoogle Scholar
  22. 22.
    Repanas A, Glasmacher B (2015) Dipyridamole embedded in polycaprolactone fibers prepared by coaxial electrospinning as a novel drug delivery system. J Drug Deliv Sci Technol 29:132–142CrossRefGoogle Scholar
  23. 23.
    Herrero Herrero M, Gómez-Tejedor JA, Vallés-Lluch A (2018) PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur Polym J 99:445–455CrossRefGoogle Scholar
  24. 24.
    Kanungo I, Chellappa N, Nishad Fathima N (2015) Microfabrication of gelatin–polycaprolactone composites for customized drug delivery. Mater Sci Eng C 49:597–603CrossRefGoogle Scholar
  25. 25.
    Schlesinger E, Ciaccio N, Desai TA (2015) Polycaprolactone thin-film drug delivery systems: empirical and predictive models for device design. Mater Sci Eng C 57:232–239CrossRefGoogle Scholar
  26. 26.
    Bose S, Vu AA, Emshadi K, Bandyopadhyay A (2018) Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Mater Sci Eng C 88:166–171CrossRefGoogle Scholar
  27. 27.
    Kim J, Kudisch M, Konichida Silva NR, Asada H, Aya-Shibuya E, Bloomer MM, Mudumba S, Bhisitkul RB, Desai TA (2018) Long-term intraocular pressure reduction with intracameral polycaprolactone glaucoma devices that deliver a novel anti-glaucoma agent. J Control Release 269:45–51CrossRefGoogle Scholar
  28. 28.
    Pathak M, Coombes AGA, Turner MS, Palmer C, Wang D, Steadman KJ (2015) Investigation of polycaprolactone matrices for intravaginal delivery of doxycycline. J Pharm Sci 104:4217–4222CrossRefGoogle Scholar
  29. 29.
    Yi Z, Wang K, Tian J, Shu Y, Yang J, Xiao W, Li B, Liao X (2016) Hierarchical porous hydroxyapatite fibers with a hollow structure as drug deliverycarriers. Ceram Int 42:19079–19085CrossRefGoogle Scholar
  30. 30.
    Kim H, Mondal S, Bharathiraja S, Manivasagan P, Santha Moorthy M, Oh J (2018) Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int 44:6062–6071CrossRefGoogle Scholar
  31. 31.
    Lai W, Chen C, Ren X, Lee I-S, Jiang G, Kong X (2016) Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater Sci Eng C 62:166–172CrossRefGoogle Scholar
  32. 32.
    Meshkini A, Oveisi H (2017) Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells. Colloid Surf B Biointerf 158:319–330CrossRefGoogle Scholar
  33. 33.
    Sasaki Y, Kjellén E, Ekblad L, Wahlberg P, Mineta H, Wennerberg J (2012) The anti-tumour effect of cisplatin and ifosfamide on xenografted squamous cell carcinoma of the head and neck is schedule-dependent. Oral Oncol 48:61–66CrossRefGoogle Scholar
  34. 34.
    Shariatinia Z, Védova COD, Erben MF, Tavasolinasab V, Gholivand K (2012) Synthesis, conformational and NQR analysis of phosphoric triamides containing the P(O)[N]3 skeleton. J Mol Struct 1023:18–24CrossRefGoogle Scholar
  35. 35.
    Shariatinia Z, Jalali Moghadam E, Maghsoudi N, Mirhosseini Mousavi HS, Dusek M, Eigner V (2015) Synthesis, spectroscopy, X-ray crystallography, and DFT computations of nanosized phosphazenes. Z Anorg Allg Chem 641:967–978CrossRefGoogle Scholar
  36. 36.
    Shariatinia Z, Asadi E, Yousefi M, Sohrabi M (2012) Novel organotin(IV) complexes of organophosphorus ligands: synthesis, spectroscopic, structural study and DFT calculations. J Organomet Chem 715:82–92CrossRefGoogle Scholar
  37. 37.
    Shariatinia Z, Dusek M, Eigner V (2014) Synthesis, X-ray crystallography, and DFT calculations of a novel phosphoramide. Z Anorg Allg Chem 640:2945–2955CrossRefGoogle Scholar
  38. 38.
    Shariatinia Z, Asadi E, Tavasolinasab V, Gholivand K (2013) Nanoparticles of novel organotin(IV) complexes bearing phosphoric triamide ligands. Beilstein J Nanotechnol 4:94–102CrossRefGoogle Scholar
  39. 39.
    Shariatinia Z, Javeri N, Shekarriz S (2015) Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydr Polym 118:183–198CrossRefGoogle Scholar
  40. 40.
    Shariatinia Z, Shekarriz S, Mirhosseini Mousavi HS, Maghsoudi N, Nikfar Z (2017) Disperse dyeing and antibacterial properties of nylon and wool fibers using two novel nanosized copper(II) complexes bearing phosphoramide ligands. Arab J Chem 10:944–955CrossRefGoogle Scholar
  41. 41.
    Shariatinia Z, Shajareh Tuba R (2014) Nanoparticles of cadmium nitrate and cobalt nitrate complexes bearing phosphoramide ligands designed for application in dye sensitized solar cells. J Sol Energy Eng 137:011006CrossRefGoogle Scholar
  42. 42.
    Sutton GP, Soper JT, Blessing JA, Hatch KD, Barnhill DR (1992) Ifosfamide alone and in combination in the treatment of refractory malignant gestational trophoblastic disease. Am J Obstet Gynecol 167:489–495CrossRefGoogle Scholar
  43. 43.
    Salar S, Mehrnejad F, Sajedi RH, Mohammadnejad Arough J (2017) Chitosan nanoparticles-trypsin interactions: bio-physicochemical and molecular dynamics simulation studies. Int J Biol Macromol 103:902–909CrossRefGoogle Scholar
  44. 44.
    Kaijser GP, Beijnen JH, Bult A, Hogeboom MH, Underberg WJM (1991) A systematic study on the chemical stability of ifosfamide. J Pharm Biomed Anal 9:1061–1067CrossRefGoogle Scholar
  45. 45.
    Shariatinia Z, Mazloom Jalali A, Afshar Taromi F (2016) Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes. Model Simul Mater Sci Eng 24:035002CrossRefGoogle Scholar
  46. 46.
    Mazloom Jalali A, Shariatinia Z, Afshar Taromi F (2017) Desulfurization efficiency of polydimethylsiloxane/silica nanoparticle nanocomposite membranes: MD simulations. Comput Mater Sci 139:115–124CrossRefGoogle Scholar
  47. 47.
    Shariatinia Z, Mazloom Jalali A (2018) Chitosan-based hydrogels: preparation, properties and applications. Int J Biol Macromol 115:194–220CrossRefGoogle Scholar
  48. 48.
    Yahyaei M, Mehrnejad F, Naderi-manesh H, Rezayan AH (2017) Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations. Eur J Pharm Sci 107:126–137CrossRefGoogle Scholar
  49. 49.
    Yadav P, Bandyopadhyay A, Chakraborty A, Sarkar K (2018) Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr Polym 182:188–198CrossRefGoogle Scholar
  50. 50.
    Eslami M, Javan Nikkhah S, Hashemianzadeh SM, Seyed Sajadi SA (2016) The compatibility of tacrine molecule with poly(n-butylcyanoacrylate) and chitosan as efficient carriers for drug delivery: a molecular dynamics study. Eur J Pharm Sci 82:79–85CrossRefGoogle Scholar
  51. 51.
    Kazemi S, Daryani AS, Abdouss M, Shariatinia Z (2016) DFT computations on the hydrogen bonding interactions between methacrylic acid-trimethylolpropane trimethacrylate copolymers and letrozole as drug delivery systems. J Theor Comput Chem 15:1650015CrossRefGoogle Scholar
  52. 52.
    Wang X-Y, Zhang L, Wei X-H, Wang Q (2013) Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates. Biomaterials 34:1843–1851CrossRefGoogle Scholar
  53. 53.
    Sun H (1998) Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  54. 54.
    Sun H, Ren P, Fried JR (1998) The compass force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246CrossRefGoogle Scholar
  55. 55.
    Park CH, Lee CH, Sohn J-Y, Park HB, Guiver MD, Lee YM (2010) Phase separation and water channel formation in sulfonated block copolyimide. J Phys Chem B 114:12036–12045CrossRefGoogle Scholar
  56. 56.
    Wescott JT, Qi Y, Subramanian L, Capehart TW (2006) Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J Chem Phys 124:134702–134716CrossRefGoogle Scholar
  57. 57.
    Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363CrossRefGoogle Scholar
  58. 58.
    Shariatinia Z, Mazloom Jalali A (2019) Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J Mol Liq 273:346–367CrossRefGoogle Scholar
  59. 59.
    Guo XD, Tan JPK, Kim SH, Zhang LJ, Zhang Y, Hedrick JL, Yang YY, Qian Y (2009) Computational studies on self-assembled paclitaxel structures: templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials 30:6556–6563CrossRefGoogle Scholar
  60. 60.
    Otto DP, de Villiers MM (2018) All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems. Int J Pharm 547:545–555CrossRefGoogle Scholar
  61. 61.
    Mirhosseini MM, Rahmati M, Zargarian SS, Khordad R (2017) Molecular dynamics simulation of functionalized graphene surface for high efficient loading of doxorubicin. Journal Molecular Structure 1141:441–450CrossRefGoogle Scholar
  62. 62.
    Accelrys Software Inc., San Diego, 2009Google Scholar
  63. 63.
    Ding HQ, Karasawa N, Goddard WA (1992) Atomic level simulations on a million particles: the cell multipole method for coulomb and London nonbond interactions. J Chem Phys 97:4309–4315CrossRefGoogle Scholar
  64. 64.
    Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637–649CrossRefGoogle Scholar
  65. 65.
    Berendsen HJC, Postma JPM, Gunsteren WFV, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  66. 66.
    Visscher LE, Dang HP, Knackstedt M, Hutmacher DW, Tran PA (2018) Novel 3D printed polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Mater Sci Eng C 87:78–89CrossRefGoogle Scholar
  67. 67.
    Shi GM, Chen H, Jean YC, Chung TS (2013) Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer 54:774–783CrossRefGoogle Scholar
  68. 68.
    Hu C-C, Chang C-S, Ruaan R-C, Lai J-Y (2003) Effect of free volume and sorption on membrane gas transport. J Membr Sci 226:51–61CrossRefGoogle Scholar
  69. 69.
    Chang KS, Chung YC, Yang TH, Lue SJ, Tung KL, Lin YF (2012) Free volume and alcohol transport properties of PDMS membranes: insights of nano-structure and interfacial affinity from molecular modeling. J Membr Sci 417–418:119–130CrossRefGoogle Scholar
  70. 70.
    I. Teraoka, Polymer solutions: an introduction to physical properties, New York: Wiley, ISBNs: 0-471-38929-3 (Hardback); 0-471-22451-0 (Electronic), 2002Google Scholar
  71. 71.
    Filipczak K, Wozniak M, Ulanski P, Olah L, Przybytniak G, Olkowski RM, Lewandowska-Szumiel M, Rosiak JM (2006) Poly(ɛ-caprolactone) biomaterial sterilized by E-beam irradiation. Macromol Biosci 6:261–273CrossRefGoogle Scholar
  72. 72.
    Yeo MG, Jung W-K, Kim GH (2012) Fabrication, characterisation and biological activity of phlorotanninconjugated PCL/β-TCP composite scaffolds for bone tissue regeneration. J Mater Chem 22:3568–3577CrossRefGoogle Scholar
  73. 73.
    Howell JS, Boucher DS (2016) Temperature dependence of the convex solubility parameters of organic semiconductors. J Polym Sci B Polym Phys 54:81–88CrossRefGoogle Scholar
  74. 74.
    Howell JS, Roesing M, Boucher D (2017) A functional approach to solubility parameter computations. J Phys Chem B 121:4191–4201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations