Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electronic structure and UV–Vis spectra simulation of square planar Bis(1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes [M(L)2]x (M = Ni, Pd, Pt, Cu, Ag, and x = − 1, 0, + 1): DFT and TD-DFT study

  • 295 Accesses

  • 2 Citations

Abstract

DFT/B3LYP calculations with full geometry optimizations have been carried out on 1-phenylazo-2-naphthol and their metal complexes of formula M(MePhNap)2 (M = Ni, Pd, Pt, Cu, Ag, and MePhNap = 1-(− 4-methylphenylazo)-2-naphtol) in their neutral, oxidized, and reduced forms. The predicted structures provide to the M(II) metal ions the square planar geometry and distorted azo ligand. The TD-DFT theoretical study performed on the optimized geometry allowed us to predict the UV–Vis spectra and to identify quite clearly the spectral position and the nature of the different electronic transitions according to their molecular orbital localization. Large HOMO-LUMO gaps are calculated for all optimized structures suggesting good chemical stabilities, hence, reproducing the available UV–Vis spectra and compared to that of free ligand. The electronic spectra obtained in DMSO and ethanol polar solvents predict more important red shifts than those obtained in hexane as nonpolar one.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Zollinger H (1987) Color chemistry. VCH Publishers, New York

  2. 2.

    Nishihara H (2004) Multi-mode molecular switching properties and functions of azo-conjugated metal complexes. Bull Chem Soc Jpn 77:407

  3. 3.

    Tincher WC (1989) Processing wastewater from Carpet Mills. Text Chem Color 21:33

  4. 4.

    Morrison C, Bandara J, Kiwi J (1996) Sunlight induced decoloration/degradation of non-biodegradable orange II dye by advanced oxidation technologies in homogeneous and heterogeneous media. J Adv Oxid Technol 1:160

  5. 5.

    Nadtochenko V, Kiwi J (1997) Photoinduced adduct formation between orange II and [Fe 3+(aq)] or Fe(ox) 3 3-–H2O2 photocatalytic degradation and laser spectroscopy. J Chem Soc Faraday Trans 93:2373

  6. 6.

    Katz HE, Singer KD, Sohn JE, Dirk CW, King LA, Gordon HM (1987) Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules. J Am Chem Soc 109:6561

  7. 7.

    Abe T, Mano S, Yamada Y, Tomotake A (1999) Termal dye transfer printing with chelate compounds. J Imag Sci Technol 43:339

  8. 8.

    Wang S, Shen S, Xu H (2000) Synthesis spectroscopic and thermal properties of a series of azo metal chelate dyes. Dyes Pigments 44:195

  9. 9.

    Wu S, Qian W, Xia Z, Zou Y, Wang S, Shen S (2000) Investigation of third-order nonlinearity of an azo dye and its metal-substituted compounds. Chem Phys Lett 330:535

  10. 10.

    Geng Y, Gu D, Gan F (2004) Application of novel azo metal thin film in optical recording. Opt Mater 27:193

  11. 11.

    Bin W, Yi-Qun W, Dong-Hong G, Fu-Xi G (2003) Optical parameters and absorption of azo dye and its metal-substituted compound thin films. Chin Phys Lett 20:1596

  12. 12.

    Fu-Xin H, Yi-Qun W, Dong-Hong G, Fu-X G (2003) Spectroscopy and optical properties of novel metal(II)-azo complex films in blue-violet light region. Chin Phys Let 20: 2259

  13. 13.

    Hamada E, Fujii T, Tomizawa Y, Iimura S (1997) High density optical recording on dye material discs: an approach for achieving 4.7 GB density. Jpn J Appl Phys 36:593

  14. 14.

    Suzuki Y, Okamoto Y, Kurose Y, Maeda S (1999) High-speed recording performance of metal azo dye containing digital video disc-recordable discs. Jpn J Appl Phys 38:1669

  15. 15.

    Nejati K, Rezvani Z, Seyedahmadian M The synthesis, characterization, thermal and optical properties of copper, nickel, and vanadyl complexes derived from azo dyes. Dyes Pigments 83:304

  16. 16.

    Li X, Wu Y, Gu D, Gan F (2010) Spectral, thermal and optical properties of metal(ІІ)–azo complexes for optical recording media. Dyes Pigments 86:182

  17. 17.

    Woodward C, Freiser H (1973) Sulphonated azo-dyes as extractive metallochromic reagents. Talanta 20:417

  18. 18.

    Shibata S, Furukawa M, Toei K (1973) Syntheses and spectrophotometric studies of azo dyes containing m-dimethylaminophenol as analytical reagents. Anal Chim Acta 66:397

  19. 19.

    Pilipenko AT, Savransky LI (1987) Selectivity and sensitivity of metal determination by co-ordination compounds. Talanta 34:77

  20. 20.

    Szurdoki F, Ren D, Walt DR (2000) A combinatorial approach to discover new chelators for optical metal ion sensing. Anal Chem 72:5250

  21. 21.

    Abe T, Mano S, Yamaya Y, Tomotake A (1999) Thermal dye transfer printing with chelate compounds. J Imag Sci Tech 43:339

  22. 22.

    Meyers GA, Michaels FM, Reeves RL, Trotter P (1985) Kinetics and mechanism of chelation of nickel(II) by a tridentate .alpha.-[(2-hydroxyphenyl)azo]-.alpha.-acetoacetonitrile and an .alpha.-(8-quinolylazo)-.alpha.-acetoacetonitrile dye. J Inorg Chem 24:731

  23. 23.

    Graves HM, Johnston LG, Reiser A (1988) The effect of metallization on singlet oxygen formation by azo-dyes. J Photochem Photobiol A 43:183

  24. 24.

    M. A Benaouida, A. Benosmane, H. Bouguerria, S. E Bouaoud, H. Merazig. Bis{1-[(E)-(2-chlorophenyl)diazenyl]naphthalen-2-olato}copper(II). Acta Cryst E69 (2013) m405

  25. 25.

    Kurahashi M (1974) Crystal structure of bis(1-(2-thiazolylazo)-2-naphtolato)nickel(II). Bul Chem Soc Jpn 47:2067

  26. 26.

    Jarad AJ, Majeed IY, Hussein AO (2018) Synthesis and spectral studies of heterocyclic azo dye complexes with some transition metals. J Phys Conf Ser 1003:012021

  27. 27.

    Kilinçarslan R, Erdem E (2007) Synthesis and spectral characterization of some new azo dyes and their metal complexes. Transit Met Chem 32:102

  28. 28.

    Abdallah SM (2012) Metal complexes of azo compounds derived from 4-acetamidophenol and substituted aniline. Arab J Chem 5:251

  29. 29.

    Gup R, Giziroglu E, Kırkan B (2007) Synthesis and spectroscopic properties of new azo-dyes and azo-metal complexes derived from barbituric acid and aminoquinoline. Dyes Pigments 73:40

  30. 30.

    Chen XC, Tao T, Wang YG, Peng YX, Huang W, Qian HF (2012) Azo-hydrazone tautomerism observed from UV-Vis spectra by pH control and metal-ion complexation for two heterocyclic disperse yellow dyes. Dalton Trans 41:11107

  31. 31.

    Lin ML, Tsai CY, Li CY, Huang BH, Ko BT (2010) Bis{1-[(E)-(2-methyl-phen-yl)diazen-yl]-2-naphtho-lato}palladium(II). Acta Cryst E 66:m1022

  32. 32.

    Tai WJ, Li CH, Li CY, Ko BT (2010) Bis{1-[(E)-o-tolyl-diazen-yl]-2-naphtho-l-ato}copper(II). Acta Cryst E 66:m1315

  33. 33.

    Chetioui S, Rouag DA, Djukic JP, Bochet CG, Touzani R, Bailly C, Crochet A, Fromm KM (2016) Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-ol. Acta Cryst E 72:1093

  34. 34.

    Zollinger H, Colour Chemistry, 2nd Edn, Weinham: VCH Publications, 1991

  35. 35.

    Mahapatra BB, Kumar NPA, Bhoi PK (1990) Polymetallic complexes. Part-XXX. Complexes of cobalt-, nickel-, coppery zinc-, cadmium- and mercury (II) with doubly-tridentate chelating azo-dye ligand. J Indian Chem Soc 67:800

  36. 36.

    Nishihara H (2005) Combination of redox-and photochemistry of azo-conjugated metal complexes. Coord Chem Rev 249:1468

  37. 37.

    Wang S, Shen S, Xu H, Gu D, Yin J, Tang X (2000) Spectroscopic and optical properties of an azo-metal chelate dye as optical recording medium. Mater. Sci. Eng. B76:69

  38. 38.

    Wang S, Shen S, Xu H, Gu D, Yin J, Tang X (1999) Synthesis and optical properties of an azo metal chelate compound for optical recording medium. Dyes Pigments 42:173

  39. 39.

    Mansouri L, Zouchoune B (2015) Substitution effects and electronic properties of the azo dye (1-phenylazo-2-naphthol) species: a TD-DFT electronic spectra investigation. Can J Chem 93:509

  40. 40.

    Humphrey SM, Wood PT (2004) Multiple areas of magnetic bistability in the topological ferrimagnet [Co3(NC5H3(CO2)2-2,5)23-OH)2(OH2)2]. J Am Chem Soc 126:13236

  41. 41.

    Ciurtin DM, Smith MD, zur Loye HC (2003) Structural diversity in the Cu(pyrazinecarboxylate)2/CdCl2 system: new one-, two- and three-dimensional mixed metal coordination polymers. Dalton Trans (7):1245

  42. 42.

    Tong ML, Chen XM, Batten SR (2003) A new self-penetrating uniform net, (8,4) (or 86), containing planar four-coordinate nodes. J Am Chem Soc 125:16170

  43. 43.

    Ghosh SK, Bharadwaj PK (2005) Coordination polymers of La(III) as bunched infinite nanotubes and their conversion into an open-framework structure. Inorg Chem 44:3156

  44. 44.

    Eubank JF, Walsh RD, Eddaoudi M (2005) Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework. Chem Commun (16):2095

  45. 45.

    Zhang MB, Zhang J, Zheng ST, Yang GY (2005) A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed 44:1385

  46. 46.

    Lu JY (2003) Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions. Coord Chem Rev 246:327

  47. 47.

    Farah S, Ababsa S, Benhamada N, Zouchoune B (2010) Theoretical investigation of the coordination of dibenzazepine to transition-metal complexes: a DFT study. Polyhedron 29:2722

  48. 48.

    Bouchakri N, Benmachiche A, Zouchoune B (2011) Bonding analysis and electronic structure of transition metal–benzoquinoline complexes: a theoretical study. Polyhedron 30:2644

  49. 49.

    Benmachiche A, Zendaoui SM, Bouaoud SE, Zouchoune B (2012) Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: a DFT study. Int J Quant Chem:11985

  50. 50.

    Farah S, Bouchakri N, Zendaoui SM, Saillard JY, Zouchoune B (2010) Electronic structure of bis-azepine transition-metal complexes: a DFT investigation. J Mol Strut 953:143

  51. 51.

    Farah S, Korichi H, Zendaoui SM, Saillard JY, Zouchoune B (2009) The coordination of azepine to transition-metal complexes: a DFT analysis. Inorg Chim Acta 362:354

  52. 52.

    Chekkal F, Zendaoui SM, Zouchoune B, Saillard JY (2013) Structural and spin diversity of M(indenyl)2transition-metal complexes: a DFT investigation. New J Chem 37:2293

  53. 53.

    Wang H, Xie Y, Bruce R.B, Schaefer III H.F (2008) Bis(cycloheptatrienyl) derivatives of the first-row transition metals: variable hapticity of the cycloheptatrienyl ring. Eur J Inorg Chem 23:3698

  54. 54.

    Zouchoune F, Zendaoui SM, Bouchakri N, Djedouani A, Zouchoune B (2010) Electronic structure and vibrational frequencies in dehydroacetic acid (DHA) transition-metal complexes: a DFT study. J Mol Struct 945:78

  55. 55.

    Saiad A (1096) Zouchoune B electronic (2015) structure and bonding analysis of transition metal sandwich and half-sandwich complexes of the triphenylene ligand. Can J Chem:93

  56. 56.

    Benhamada N, Bouchene R, Bouacida S, Zouchoune B (2015) Molecular structure, bonding analysis and redox properties of transition metal–Hapca [bis(3-aminopyrazine-2-carboxylic acid)] complexes: a theoretical study. Polyhedron 91:59

  57. 57.

    ADF2014.01 Version, Theoretical Chemistry, Vrije Universiteit: Amsterdam. The Netherlands, SCM

  58. 58.

    Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree-Fock-Slater calculations I. The computational procedure. Chem Phys 2:41

  59. 59.

    te Velde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84

  60. 60.

    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. The Chim Acc 99:391

  61. 61.

    Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1

  62. 62.

    te Velde G, Bickelhaupt FM, Fonseca Guerra C, van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931

  63. 63.

    Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

  64. 64.

    Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

  65. 65.

    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005

  66. 66.

    Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Chem Phys 96:6937

  67. 67.

    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

  68. 68.

    Klamt A, Schüümann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

  69. 69.

    Flükiger P, Lüthi H.P, Portmann S, Weber J, MOLEKEL, Version 4.3.win32 Swiss Center for Scientific Computing (CSCS), Switzerland, 2000–2001. http://www.cscs.ch/molekel/

  70. 70.

    Ispir E (2009) The synthesis, characterization, electrochemical character, catalytic and antimicrobial activity of novel, azo-containing Schiff bases and their metal complexes. Dyes Pigments 82:13

  71. 71.

    Oakes J, Dixon S (2004) Physical interactions of dyes in solution – influence of dye structure on aggregation and binding to surfactants/polymers. Rev Prog Color 34:110–128

  72. 72.

    Alvarez J.A.L, Ruiz V.F.M, RincónJ.J, Ramírez I.M, ReyesC.F, Gutiérrez R.S, Removal of direct dyes with alginic acid. J Mex Chem Soc 59 (2015) 215–228

  73. 73.

    Mkpenie VN, Essien EE (2015) Solvent and methyl group effects on the electronic spectral properties of azo-2-naphtol dye. Am Chem Sci J 8(1)

Download references

Acknowledgements

The authors are grateful to the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for the financial support.

Author information

Correspondence to Bachir Zouchoune.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zouchoune, B., Mansouri, L. Electronic structure and UV–Vis spectra simulation of square planar Bis(1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes [M(L)2]x (M = Ni, Pd, Pt, Cu, Ag, and x = − 1, 0, + 1): DFT and TD-DFT study. Struct Chem 30, 691–701 (2019). https://doi.org/10.1007/s11224-018-1215-0

Download citation

Keywords

  • Azo dye
  • Metal-ligand coordination
  • Electronic transitions
  • Molecular orbital localization