Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 399–408 | Cite as

Attachment of CO to a (6, 6) CNT with a Sc adsorbate atom

  • Qing-Yun Wang
  • Yong-Chun TongEmail author
  • Pen-Ji Yan
  • Xin-Jian Xu
  • Zhen Li
Original Research
  • 22 Downloads

Abstract

We have comparatively investigated the adsorption behaviors of Sc atom on the external and internal surfaces of the pristine, Stone-Wales (SW), and single-vacancy (SV) defect nanotubes based on the density functional theory. Our results reveal that the stability of Sc atom onto the external and internal surfaces of the carbon nanotubes is in following orders by defect: SV>SW1>SW2>pristine (external surfaces), SV>SW2>SW1>pristine (internal surfaces). To explore the reactivity of Sc@CNT/SW/SV complexes which can serve as a gas sensor or a catalyst in direct methanol fuel cell (DMFC), the interaction between a CO molecule and Sc@CNT/SW/SV is also examined. The SV defect in carbon nanotubes can make the confined Sc atom with good CO adsorption property, while the confined Sc in the SW defect carbon nanotube has good anti-CO poisoning. By our studies, it plays an important guidance role in improving the activity of metal catalyst and the sensitivity and stability of metal particles to functional molecules, and provides the theoretical basis for designing new carbon nanotube-based metal catalyst.

Keywords

Defect carbon nanotubes CO Density function theory Sc 

Notes

Funding information

This work was funded by the National Natural Science Foundation of Gansu (No. 1606RJYG220).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mackiewicz N, Surendran G, Remita H, Keita B, Zhang G, Nadjo L, Hagège A, Doris E, Mioskowski C (2008) Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J Am Chem Soc 130:8110CrossRefGoogle Scholar
  2. 2.
    Rossi P, Suarez S, Soldera F, Mücklich F (2015) Quantitative assessment of the reinforcement distribution homogeneity in CNT/metal composites. Adv Eng Mater 17:1017CrossRefGoogle Scholar
  3. 3.
    Gallego J, Barrault J, Batiot-Dupeyrat C, Mondragon F (2013) Intershell spacing changes in MWCNT induced by metal–CNT interactions. Micron 44:463CrossRefGoogle Scholar
  4. 4.
    Andersen NI, Serov A, Atanassov P (2015) Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media. Appl Catal B Environ 163:623CrossRefGoogle Scholar
  5. 5.
    Moaiyeri MH, Razi F (2015) Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance. J Comput Electron 16:240CrossRefGoogle Scholar
  6. 6.
    Lin D, Saei M, Suslov S, Jin S, Cheng GJ (2015) Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading. Sci Rep 5:15405CrossRefGoogle Scholar
  7. 7.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72CrossRefGoogle Scholar
  8. 8.
    Liu H, Diao J, Wang Q, Gu S, Chen T, Miao C, Yang W, Su D (2014) A nanodiamond/CNT–SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Chem Commun 50:7810CrossRefGoogle Scholar
  9. 9.
    Lin R, Ge L, Liu S, Rudolph V, Zhu Z (2015) Mixed-matrix membranes with metal–organic framework-decorated CNT fillers for efficient CO2 separation. ACS Appl Mater Interfaces 7:14750CrossRefGoogle Scholar
  10. 10.
    Xiong H, Motchelaho MA, Moyo M, Jewell LL, Coville NJ (2015) Effect of group I alkali metal promoters on Fe/CNT catalysts in Fischer–Tropsch synthesis. Fuel 150:687CrossRefGoogle Scholar
  11. 11.
    Zhong Y, Yuan J, Wen J, Li X, Xu Y, Liu W, Zhang S, Fang Y (2014) Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution. Dalton Trans 44:18260CrossRefGoogle Scholar
  12. 12.
    Yang S, Wang L, Zhang X, Yang W, Song G (2015) Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chem Eng J 275:315CrossRefGoogle Scholar
  13. 13.
    Fediai A, Ryndyk DA, Seifert G, Mothes S, Schroter M (2016) Michael Schroter, Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: a large-scale ab initio study. Appl Phys Lett 109:103101CrossRefGoogle Scholar
  14. 14.
    Jeong Y, Jeong J, Kim HY, Jeong HJ, Song CK (2016) Performance improvement of organic thin film transistors with carbon nanotube/metal hybrid electrodes for S/D contacts. Org Electron 36:153CrossRefGoogle Scholar
  15. 15.
    Li Y, He H, Fu W, Mu C, Tang XZ, Liu Z, Chic D, Hu X (2016) In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chem Commun 52:1439CrossRefGoogle Scholar
  16. 16.
    Matsuda S, Kubo Y, Uosaki K, Nakanishi S (2017) Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon 119:119CrossRefGoogle Scholar
  17. 17.
    Tack LW, Azam MA, Seman RNAR (2017) Structural and electronic properties of transition-metal oxides attached to a single-walled CNT as a lithium-ion battery electrode: a first-principles study. J Phys Chem A 121:2636CrossRefGoogle Scholar
  18. 18.
    Jayathilaka WADM, Chinnappan A, Ramakrishna S (2017) A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronic. J Mater Chem C 5:9209CrossRefGoogle Scholar
  19. 19.
    Deng D, Yu L, Chen X, Wang G, Jin L, Pan X, Deng J, Sun G, Bao X (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem 125:389CrossRefGoogle Scholar
  20. 20.
    Sundaram R, Yamada T, Hata K, Sekiguchi A (2017) Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution. Sci Rep 7:9267CrossRefGoogle Scholar
  21. 21.
    Zhu QL, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1:220CrossRefGoogle Scholar
  22. 22.
    Krommenhoek M, Shamma M, Morsi K (2017) Processing, characterization, and properties of aluminum–carbon nanotube open-cell foams. J Mater Sci 52:3927CrossRefGoogle Scholar
  23. 23.
    Kałużny J, Merkisz-Guranowska A, Giersig M, Kempa K (2017) Lubricating performance of carbon nanotubes in internal combustion engines – engine test results for CNT enriched oil. Int J Automot Technol 18:1047CrossRefGoogle Scholar
  24. 24.
    Li J, Ren Z, Wang S, Ren Y, Qiu Y, Yu J (2016) MnO2 nanosheets grown on internal surface of macroporous carbon with enhanced electrochemical performance for supercapacitors. ACS Sustain Chem Eng 4:3641CrossRefGoogle Scholar
  25. 25.
    Huang J, Zhu N, Yang T, Zhang T, Wu P, Dang Z (2015) Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron 72:332CrossRefGoogle Scholar
  26. 26.
    Zhang G, Xie W, Chen Y, Liu F, Chen C (2015) The effect of doping and confinement on the adsorption of Pt on CNTs upon Be, B, N and O doping: a theoretical study. J Inorg Organomet Polym Mater 25:1502CrossRefGoogle Scholar
  27. 27.
    Zheng J, Duan X, Lin H, Gu Z, Fang H, Li J, Yuan Y (2016) Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate. Nanoscale 8:5959CrossRefGoogle Scholar
  28. 28.
    Xiao J, Pan X, Guo S, Ren P, Bao X (2015) Toward fundamentals of confined catalysis in carbon nanotubes. J Am Chem Soc 137:477CrossRefGoogle Scholar
  29. 29.
    Mananghaya M (2015) Hydrogen adsorption of novel N-doped carbon nanotubes functionalized with scandium. Int J Hydrog Energy 40:9352CrossRefGoogle Scholar
  30. 30.
    Yang M, Ling Q, Yang H, Li C, Zhang A (2014) Enhanced catalytic activity of K-birnessite MnO2 confined in carbon nanotubes for selective oxidation of benzyl alcohol. Catal Commun 46:238CrossRefGoogle Scholar
  31. 31.
    He Y, Zhang J, Hou S, Wang Y, Yu Z (2009) Schottky barrier formation at metal electrodes and semiconducting carbon nanotubes. Appl Phys Lett 94:093107CrossRefGoogle Scholar
  32. 32.
    Mananghaya M, Belo LP, Beltran A (2016) Adsorption of hydrogen in scandium/titanium decorated nitrogen doped carbon nanotube. Mater Chem Phys 180:357CrossRefGoogle Scholar
  33. 33.
    Mananghaya M, Yu D, Santos GN, Rodulfo E (2016) Scandium and titanium containing single-walled carbon nanotubes for hydrogen storage: a thermodynamic and first principle calculation. Sci Rep 6:27370CrossRefGoogle Scholar
  34. 34.
    Mananghaya M (2015) Stability and electronic properties of the adsorption of molecular hydrogen on metal-containing single-walled carbon nanotubes. J Korean Chem Soc 59:429CrossRefGoogle Scholar
  35. 35.
    Qian Q, Li G, Jin Y, Liu J, Zou Y, Jiang K, Fan S, Li Q (2014) Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors. ACS Nano 8:9597CrossRefGoogle Scholar
  36. 36.
    Liyanage LS, Xu X, Pitner G, Bao Z, Wong HSP (2014) VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett 14:1884CrossRefGoogle Scholar
  37. 37.
    Robinson JA, Snow ES, Baadescu SC, Reinecke TL, Perkins FK (2006) Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett 6:1747CrossRefGoogle Scholar
  38. 38.
    Dresselhaus M, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47CrossRefGoogle Scholar
  39. 39.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508CrossRefGoogle Scholar
  40. 40.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756CrossRefGoogle Scholar
  41. 41.
    Tang Y, Yang Z, Dai X (2012) A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys Chem Chem Phys 14:16566CrossRefGoogle Scholar
  42. 42.
    Zhao J, Chen Y, Fu H (2012) Si-embedded graphene: an efficient and metal-free catalyst for CO oxidation by N2O or O2. Theor Chem Accounts 131:1CrossRefGoogle Scholar
  43. 43.
    Piacenza M, Grimme S (2004) Systematic quantum chemical study of DNA-base tautomers. J Comput Chem 25:83CrossRefGoogle Scholar
  44. 44.
    Grimme S (2006) GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qing-Yun Wang
    • 1
  • Yong-Chun Tong
    • 1
    Email author
  • Pen-Ji Yan
    • 1
  • Xin-Jian Xu
    • 1
  • Zhen Li
    • 1
  1. 1.College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of GansuHexi UniversityZhangyeChina

Personalised recommendations