Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 327–340 | Cite as

Environmental degradability of 1,2,3,4-tetrazine-1,3-dioxide-functionalized FOX-7 derivatives with high energy and low sensitivity: a computational evaluation

  • Dong Xiang
  • Simin Zhu
  • Hui Qian
  • Weihua ZhuEmail author
Original Research
  • 52 Downloads

Abstract

We introduced 1,2,3,4-tetrazine-1,3-dioxide into the basic skeleton of FOX-7 together with amino, nitro, and N-oxide groups to design a new family of novel energetic compounds. Their detonation properties and impact sensitivity were evaluated. We designed their reasonable synthesis paths based on the systematic synthesis method. Then, we studied the reduction and oxidation abilities of the title compounds in the hydrated state to get more detailed insight in their environmental hazards. Finally, the compound with the best performance is selected as an example to study the degradation mechanisms to evaluate its environmental compatibility. The present theoretical studies may stimulate further experimental synthesis and environmental degradation evaluation of novel high-nitrogen energetic compounds.

Keywords

Quantum-chemical calculations FOX-7 derivatives Detonation performance Decomposition mechanisms Environmental degradation evaluation 

Notes

Funding information

This work was supported by NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. U1530104) and National Natural Science Foundation of China (Grant No. 21773119).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhang J, Mitchell LA, Parrish DA, Shreeve JNM (2015) J Am Chem Soc 137:10532–10535CrossRefGoogle Scholar
  2. 2.
    Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321CrossRefGoogle Scholar
  3. 3.
    Zhu WH, Zhang C, Wei T, Xiao HM (2011) J Comput Chem 32:2298–2312CrossRefGoogle Scholar
  4. 4.
    Wu Q, Zhu WH, Xiao HM (2013) Struct Chem 24:1725–1736CrossRefGoogle Scholar
  5. 5.
    Wu Q, Zhu WH, Xiao HM (2013) J Chem Eng Data 58:2748–2762CrossRefGoogle Scholar
  6. 6.
    Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD (2005) J Am Chem Soc 127:12537–12543CrossRefGoogle Scholar
  7. 7.
    Talawar MB, Sivabalan R, Senthilkumar N, Prabhu G, Asthana SN (2004) J Hazard Mater 113:11–25CrossRefGoogle Scholar
  8. 8.
    Saracoglu N (2007) Tetrahedron 63:4199–4236CrossRefGoogle Scholar
  9. 9.
    Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) J Phys Chem A 113:9404–9412CrossRefGoogle Scholar
  10. 10.
    Klenov MS, Guskov AA, Anikin OV, Churakov AM, Strelenko YA, Fedyanin IV, Tartakovsky VA (2016) Angew Chem Int Ed 55:11472–11475CrossRefGoogle Scholar
  11. 11.
    Dippold AA, Klapötke TM (2013) J Am Chem Soc 135:9931–9938CrossRefGoogle Scholar
  12. 12.
    Wu Q, Zhu WH, Xiao HM (2014) J Mol Model 20:2483CrossRefGoogle Scholar
  13. 13.
    Zhang JH, Shreeve JNM (2014) J Am Chem Soc 136:4437–4445CrossRefGoogle Scholar
  14. 14.
    Wei T, Zhu WH, Zhang JJ, Xiao HM (2010) J Hazard Mater 179:581–590CrossRefGoogle Scholar
  15. 15.
    Upadhyay MK, Sengupta SK, Singh HJ (2015) J Mol Model 21:18CrossRefGoogle Scholar
  16. 16.
    Klapötke TM, Kurz MQ, Schmid PC, Stierstorfer J (2015) J Energ Mater 33:191–201CrossRefGoogle Scholar
  17. 17.
    Göbel M, Karaghiosoff K, Klapötke TM, Piercey DG, Stierstorfer J (2010) J Am Chem Soc 132:17216–17226CrossRefGoogle Scholar
  18. 18.
    Singh H, Mukherjee U, Saini RS (2012) J Energ Mater 30:265–281CrossRefGoogle Scholar
  19. 19.
    Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) J Mater Chem 22:20418–20422CrossRefGoogle Scholar
  20. 20.
    Ma Y, Zhang A, Zhang C, Jiang D, Zhu Y, Zhang C (2014) Cryst Growth Des 14:4703–4713CrossRefGoogle Scholar
  21. 21.
    Zhang C, Wang X, Huang H (2008) J Am Chem Soc 130:8359–8365CrossRefGoogle Scholar
  22. 22.
    Meng LY, Lu ZP, Ma Y, Xue XG, Nie FD, Zhang CY (2016) Cryst Growth Des 16:7231–7239CrossRefGoogle Scholar
  23. 23.
    Zhang JH, Dharavath S, Mitchell LA, Parrish DA, Shreeve JNM (2016) J Am Chem Soc 138:7500–7503CrossRefGoogle Scholar
  24. 24.
    Sun Q, Zhang Y, Xu K, Ren Z, Song J, Zhao F (2015) J Chem Eng Data 60:2057–2061CrossRefGoogle Scholar
  25. 25.
    Politzer P, Murray JS (2011) Cent Eur J Energy Mater 8:209–220Google Scholar
  26. 26.
    Song X, Li J, Hou H, Wang B (2009) J Comput Chem 30:1816–1820CrossRefGoogle Scholar
  27. 27.
    Wu Q, Pan Y, Xia XL, Shao YL, Zhu WH, Xiao HM (2013) Struct Chem 24:1579–1590CrossRefGoogle Scholar
  28. 28.
    Klapötke TM, Piercey DG, Stierstorfer J (2011) Chem Eur J 17:13068–13077CrossRefGoogle Scholar
  29. 29.
    Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2013) Chem Eur J 19:4602–4613CrossRefGoogle Scholar
  30. 30.
    Mclellan WL, Hartley WR, Brower ME, Khanna (1988) In health advisory for octahydro-1,3,5, 7-tetranitro 1,3,5,7-tetrazocine (HMX). EPAGoogle Scholar
  31. 31.
    Holdsworth G, Johnson MS, Hawkins MS (2001) Wildlife toxicity assessment for HMX. US Army Center for Health Promotion and Preventive Medicine (USACHPPM), ProjectGoogle Scholar
  32. 32.
    Zhang C, Li Y, Xiong Y, Wang X, Zhou M (2011) J Phys Chem A 115:11971–11978CrossRefGoogle Scholar
  33. 33.
    Sviatenko LK, Gorb L, Hill V, Leszczynska D, Shukla MK, Okovytyy SI, Leszczynski J (2016) Environ Sci Technol 50:10039–10046CrossRefGoogle Scholar
  34. 34.
    Sviatenko LK, Gorb L, Shukla MK, Seiter JM, Leszczynska D, Leszczynski J (2016) Chemosphere 148:294–299CrossRefGoogle Scholar
  35. 35.
    Sviatenko LK, Isayev O, Gorb L, Hill FC, Leszczynska D, Leszczynski J (2015) J Comput Chem 36:1029–1035CrossRefGoogle Scholar
  36. 36.
    Qu R, Liu H, Feng M, Yang X, Wang Z (2012) J Chem Eng Data 57:2442–2455CrossRefGoogle Scholar
  37. 37.
    Shi J, Qu R, Feng M, Wang X, Wang L, Yang S, Wang Z (2015) Environ Sci Technol 49:4209–4217CrossRefGoogle Scholar
  38. 38.
    Zeng X, Qu R, Feng M, Chen J, Wang L, Wang Z (2016) Environ Sci Technol 50:8128–8134CrossRefGoogle Scholar
  39. 39.
    Wang F, Du HC, Zhang JY, Gong XD (2011) J Phys Chem A 115:11788–11795CrossRefGoogle Scholar
  40. 40.
    Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) J Phys Chem A 115:6617–6621CrossRefGoogle Scholar
  41. 41.
    Wu Q, Zhu WH, Xiao HM (2014) RSC Adv 4:3789–3797CrossRefGoogle Scholar
  42. 42.
    Wu Q, Zhu WH, Xiao HM (2014) J Mater Chem A 2:13006–13015CrossRefGoogle Scholar
  43. 43.
    Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062–8066CrossRefGoogle Scholar
  44. 44.
    Politzer P, Lane P, Murray JS (2013) Cent Eur J Energ Mater 10:37–52Google Scholar
  45. 45.
    Hehre WJ, Radom L, Schleyer PVR, Pople JAA (1986) Ab initio molecular orbital theory. John Wiley & Sons: New YorkGoogle Scholar
  46. 46.
    Zhang J, Xiao JJ, Xiao HM (2002) Int J Quantum Chem 86:305–312CrossRefGoogle Scholar
  47. 47.
    Zhang J, Xiao HM, Gong XD (2001) J Phys Org Chem 14:583–588CrossRefGoogle Scholar
  48. 48.
    Xiao HM, Zhang J (2002) Ab initio molecular orbital theory. Sci Chin Ser B 45:21–29Google Scholar
  49. 49.
    Wong MW (1996) Chem Phys Lett 256:391–399CrossRefGoogle Scholar
  50. 50.
    Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) Mol Phys 107:2095–2101CrossRefGoogle Scholar
  51. 51.
    Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35CrossRefGoogle Scholar
  52. 52.
    Thottempudi V, Shreeve JNM (2011) J Am Chem Soc 133:19982–19992CrossRefGoogle Scholar
  53. 53.
    Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574CrossRefGoogle Scholar
  54. 54.
    Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901CrossRefGoogle Scholar
  55. 55.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A. 01. Gaussian, Inc., WallingfordGoogle Scholar
  56. 56.
    Becke AD (1993) Chem Phys 98:5648–5652Google Scholar
  57. 57.
    Lee C (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  58. 58.
    Truhlar DG, Cramer CJ, Lewis A, Bumpus JA (2004) J Chem Educ 81:596CrossRefGoogle Scholar
  59. 59.
    Sviatenko L, Isayev O, Gorb L, Hill F, Leszczynski J (2011) J Comput Chem 32:2195–2203CrossRefGoogle Scholar
  60. 60.
    Abraham MH, Acree Jr WE, Cometto-Muñiz JE (2009) New J Chem 33:2034–2043CrossRefGoogle Scholar
  61. 61.
    Politzer P, Murray JS (2015) J Mol Model 21:262CrossRefGoogle Scholar
  62. 62.
    Politzer P, Murray JS (2016) Propellants Explos Pyrotech 41:414–425CrossRefGoogle Scholar
  63. 63.
    Sikder AK, Sikder N (2004) J Hazard Mater 112:1–15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Computation in Molecular and Materials Science, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Jiangsu Quality Supervision and Inspection Center for Special Safety Protection ProductsTaizhouChina

Personalised recommendations