Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 195–200 | Cite as

Growth of iron clusters on octahedral B12N12 cage: a time-dependent-DFT analysis

  • M. CastroEmail author
  • E. Chigo AnotaEmail author
Original Research
  • 54 Downloads

Abstract

Aiming to search for new sensors of drugs and vehicles for their transportation, in this work is studied the growth of iron clusters, Fen n ≤ 4, on the surface of the B12N12 cage. Results of the quantum-simulation, done with time-dependent density functional theory, shows that the Fe4 cluster growths on a hexagonal face of the octahedral B12N12 cage. Tetrahedral (T) and parallelogram (P) forms of Fe4 are stabilized by adsorption, yielding B12N12/Fe4–T, with multiplicity (M) of 13, and B12N12/Fe4–P, with M = 9, nanocomposites. The T system behaves as semiconductor and the second one shows a semimetal pattern. The global quantum descriptors for the P composite indicate high polarity, low average chemical reactivity, and lower work function, 0.05 eV, as compared to that of the T form, 0.40 eV. That is, the B12N12/Fe4–P system is promising for the design of sensor devices or nanovehicle of organic molecules.

Keywords

Octahedral B12N12 cage Parallelogram Fe4 cluster Tetrahedral F4 cluster Magnetism TD-DFT theory 

Notes

Funding information

This work was partially supported by the following projects: VIEP-BUAP (CHAE-ING18-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177), “Red Internacional para el estudio de sistemas híbridos grafeno-fullereno” of CONICYT (REDI170303), and by the National Laboratory Supercomputing Southeast housed in the BUAP. Financial support was provided by DGAPA-UNAM, under Project PAPIIT IN114619, and by the Facultad de Química, under the PAIP–FQ program. M. Castro deeply thanks the Dirección General de Cómputo y de Tecnologías de la Información (DGTIC-UNAM) Project LANCAD-UNAM-DGTIC-063 (M. Castro).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1193_MOESM1_ESM.docx (197 kb)
ESM 1 (DOCX 197 kb)

References

  1. 1.
    Wang J, Huei Lee C, Khin Yap Y (2010). Nanoscale 2:2028–2034CrossRefGoogle Scholar
  2. 2.
    Pakdel A, Bando Y, Golberg D (2014). Chem Soc Rev 43:934–959CrossRefGoogle Scholar
  3. 3.
    Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998). Appl Phys A Mater Sci Process 67:107–111CrossRefGoogle Scholar
  4. 4.
    Golberg D, Bando Y, Stephan O, Kurashima K (1998). Appl Phys Lett 73:2441–2443CrossRefGoogle Scholar
  5. 5.
    Oku T, Nishiwaki A, Narita I (2004). Sci Technol Adv Mater 5:635–638CrossRefGoogle Scholar
  6. 6.
    Shakerzadeh E, Khodayar E, Noorizadeh S (2016). Comput Mater Sci 118:155–171CrossRefGoogle Scholar
  7. 7.
    Bezi Javan M, Soltani A, Azmoodeh Z, Abdolahi N, Gholami N (2016). RSC Adv 6:104513–104521CrossRefGoogle Scholar
  8. 8.
    Shokuhi Rad A (2018). J Theor Comput Chem 17(2):1850013–1850013CrossRefGoogle Scholar
  9. 9.
    Lee CH, Xie M, Kayastha V, Wang J, Yap YK (2010). Chem Mater 22:1782–1787CrossRefGoogle Scholar
  10. 10.
    Pakdel A, Wang XB, Zhi CY, Bando Y, Watanabe K, Sekiguchi T, Nakayama T, Golberg D (2012). J Mater Chem 22:4818–4824CrossRefGoogle Scholar
  11. 11.
    Ci L, Song L, Jin CH, Jariwala D, Wu DX, Li YJ, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010). Nat Mater 9:430–435CrossRefGoogle Scholar
  12. 12.
    Grujicic M, Zhou XW (1992). Calphad 16:310–315Google Scholar
  13. 13.
    Gutsev LG, Bauschlicher CW Jr (2003) J Phys Chem A 107:7013–7023Google Scholar
  14. 14.
    Samah M, Moula B (2011). Rev Mex Fis 57(2):166–171Google Scholar
  15. 15.
    Castro M (1997). Int J Quantum Chem 64(2):223–230CrossRefGoogle Scholar
  16. 16.
    Castro M (2007). Chem Phys Lett 435(2):322–326CrossRefGoogle Scholar
  17. 17.
    Van Voorhis T, Scuseria GE (1998). J Chem Phys 109:400–410CrossRefGoogle Scholar
  18. 18.
    Sadhukhan S, Muñoz D, Adamo C, Scuseria GE (1999). Chem Phys Lett 306:83–87CrossRefGoogle Scholar
  19. 19.
    Jaramillo J, Scuseria GE (1999). Chem Phys Lett 312:269–272CrossRefGoogle Scholar
  20. 20.
    Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728CrossRefGoogle Scholar
  21. 21.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2013) Gaussian, Inc., Wallingford CTGoogle Scholar
  22. 22.
    Geerlings P, De Proft F, Langenaeker W (2003). Chem Rev 103:1793–1874CrossRefGoogle Scholar
  23. 23.
    Gálvan M, Vela A, Gázquez JL (1988) J Phys Chem 92:6470–6474Google Scholar
  24. 24.
    Lu H, Liu Z, Yan X, Li D, Parent L, Tian H(2016) Sci Rep 6:24366(1)–(11)Google Scholar
  25. 25.
    Bergveld P, Hendrikse J, Olthuis W (1998) Meas Sci Technol 9:1801–1808Google Scholar
  26. 26.
    Tang CM, Deng KM, Yang JL, Wang X (2006). Chin J Chem 24:1133–1136CrossRefGoogle Scholar
  27. 27.
    Semenov SG, Bedrina ME, Makarova MV, Titov AV (2017). J Struct Chem 58(3):447–451CrossRefGoogle Scholar
  28. 28.
    Tatewaki H, Tomonari M (1992). Can J Chem 70(2):642–656CrossRefGoogle Scholar
  29. 29.
    Cervantes-Salguero K, Seminario JM (2012). J Mol Model 18(9):4043–4052CrossRefGoogle Scholar
  30. 30.
    Yourdkhani S, Korona T, Hadipour NL (2015). J Phys Chem A 119:6446–6467CrossRefGoogle Scholar
  31. 31.
    Wang H (2010). Chin J Chem 28:1897–1901CrossRefGoogle Scholar
  32. 32.
    Haynes WM (2013) CRC handbook of chemistry and physics94th edn. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física y Química Teórica, DEPg-Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  2. 2.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations