Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 185–194 | Cite as

C–H···O interaction between cation and anion in amino acid-based ionic liquids—A DFT study in gas and solvent phase

  • Muraledharan Shyama
  • Senthilkumar LakshmipathiEmail author
Original Research
  • 63 Downloads

Abstract

The interaction between anions and cations within amino acid-based ionic liquids (AAILs) are studied in the gas phase and in three different solvents (DMSO, water, and formamide). Structural and topological analyses of ion pairs signify that they interact via C–H···O hydrogen bond. In gas and solvent phase, the aliphatic amino acids (anions) interact strongly with EMIM (1-ethyl-3-methylimidazolium) and BMIM (1-butyl-3-methylimidazolium) cations. Further, the interaction between amino acid and EMIM cation is stronger due to large charge transfer from the electronegative oxygen atoms (carbonyl group) of the amino acids to the C–H bond of the imidazole ring. All the C-H···O bonds observed between the ions are red shifted and strong due to large interaction energy. The major contribution to the interaction energy is from electrostatic and orbital energies. The implicit solvents tend to increase the H···O distance of the AAILs. The increase in the chain length of cations irrespective of phase meagerly decreases the interaction between the ions. From the solvation energy, the reaction between solvents and AAILs are exothermic. AAILs possess higher solvation energy in DMSO. Overall, ionic liquids are highly stable in the gas phase and moderately stable in the solvents due to C-H···O bonds.

Keywords

C-H···O Hydrogen bond Amino acid based ionic liquids 

Notes

Acknowledgments

Authors Dr. Senthilkumar Lakshmipathi and Mrs. Shyama Muraledharan gratefully acknowledge the DST-SERB, New Delhi, India, for granting the project and fellowship (EEQ/2016/000331).

Compliance with ethical standards

Ethical statement

All the ethical guidelines have been adhered.

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

11224_2018_1192_MOESM1_ESM.docx (3 mb)
ESM 1 (DOCX 3115 kb)

References

  1. 1.
    Grabowski SJ (2001) Ab initio calculations on conventional and unconventional hydrogen BondsStudy of the hydrogen bond strength. J Phys Chem A 105(47):10739–10746.  https://doi.org/10.1021/jp011819h CrossRefGoogle Scholar
  2. 2.
    Wang J, Gu J, Hossain M, Leszczynski J (2016) Theoretical studies on hydrogen bonds in anions encapsulated by an Azamacrocyclic receptor. Crystals 6(3):31CrossRefGoogle Scholar
  3. 3.
    Series Editors (1999) In: Leszczynski J (ed) theoretical and computational chemistry, vol 8. Elsevier, p ii.  https://doi.org/10.1016/S1380-7323(99)80765-1
  4. 4.
    Karabulut S, Namli H, Kurtaran R, Yildirim LT, Leszczynski J (2014) Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide. J Mol Graph Model 48:1–8.  https://doi.org/10.1016/j.jmgm.2013.11.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Leszczynski J Computational chemistry: reviews of current trends. J Comput Chem.  https://doi.org/10.1142/4481
  6. 6.
    Pohorille A, Wilson MA, Chipot C, New MH, Schweighofer K (1999) Chapter 13—interactions of small molecules and peptides with membranes. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 485–535.  https://doi.org/10.1016/S1380-7323(99)80088-0
  7. 7.
    Sheng Y, Leszczynski J, Garcia AA, Rosario R, Gust D, Springer J (2004) Comprehensive theoretical study of the conversion reactions of Spiropyrans: substituent and solvent effects. J Phys Chem B 108(41):16233–16243.  https://doi.org/10.1021/jp0488867 CrossRefGoogle Scholar
  8. 8.
    Sokalski WA, Kędzierski P, Grembecka J, Dziekoński P, Strasburger K (1999) Chapter 10—theoretical tools for analysis and modelling electrostatic effects in biomolecules⋆. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 369–396.  https://doi.org/10.1016/S1380-7323(99)80085-5
  9. 9.
    Šponer J, Hobza P, Leszczynski J (1999) Chapter 3—computational approaches to the studies of the interactions of nucleic acid bases. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 85–117.  https://doi.org/10.1016/S1380-7323(99)80078-8
  10. 10.
    Zakrzewska K, Lavery R (1999) Chapter 12—modelling protein-DNA interactions. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 441–483.  https://doi.org/10.1016/S1380-7323(99)80087-9
  11. 11.
    Arunan E, Desiraju Gautam R, Klein Roger A, Sadlej J, Scheiner S, Alkorta I, Clary David C, Crabtree Robert H, Dannenberg Joseph J, Hobza P, Kjaergaard Henrik G, Legon Anthony C, Mennucci B, Nesbitt David J (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83.  https://doi.org/10.1351/pac-rec-10-01-02
  12. 12.
    Arunan E, Desiraju Gautam R, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83.  https://doi.org/10.1351/pac-rep-10-01-01
  13. 13.
    Desiraju GR (1996) The C−H···O hydrogen bond: structural implications and supramolecular design. Acc Chem Res 29(9):441–449.  https://doi.org/10.1021/ar950135n CrossRefPubMedGoogle Scholar
  14. 14.
    Thakur TS, Dubey R, Desiraju GR (2015) Intermolecular atom-atom bonds in crystals—a chemical perspective. This essay and that by Lecomte et al. (2015) comment on Dunitz (2015). IUCrJ 2(2):159–160.  https://doi.org/10.1107/S205225251500189X CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gorb L, Leszczynski J (1999) Chapter 5 - Current trends in modeling interactions of DNA fragments with polar solvents. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 167–209.  https://doi.org/10.1016/S1380-7323(99)80080-6
  16. 16.
    Stefan G (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473.  https://doi.org/10.1002/jcc.20078 CrossRefGoogle Scholar
  17. 17.
    Kirchner MT, Blaser D, Boese R, Thakur TS, Desiraju GR (2011) Weak C-H...O hydrogen bonds in anisaldehyde, salicylaldehyde and cinnamaldehyde. Acta Crystallogr C 67(10):o387–o390.  https://doi.org/10.1107/S0108270111035840 CrossRefPubMedGoogle Scholar
  18. 18.
    Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Prod Process 1(4):223–236.  https://doi.org/10.1007/s100980050036 CrossRefGoogle Scholar
  19. 19.
    Earle MJ, Seddon KR (2002) Ionic liquids: green solvents for the future. In: Clean Solvents (ed) ACS Symposium Series, vol 819. American Chemical Society, pp 10-25.  https://doi.org/10.1021/bk-2002-0819.ch002.
  20. 20.
    Lei Z, Chen B, Koo Y-M, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117(10):6633–6635.  https://doi.org/10.1021/acs.chemrev.7b00246 CrossRefPubMedGoogle Scholar
  21. 21.
    Kirchhecker S, Esposito D (2014) Amino acid-derived imidazolium zwitterions: building blocks for renewable ionic liquids and materials. In: Green Technologies for the Environment (ed). ACS Symposium Series, vol 1186. American Chemical Society, pp 53-68.  https://doi.org/10.1021/bk-2014-1186.ch004
  22. 22.
    Wu C, Wang J, Wang H, Pei Y, Li Z (2011) Effect of anionic structure on the phase formation and hydrophobicity of amino acid ionic liquids aqueous two-phase systems. J Chromatogr A 1218(48):8587–8593.  https://doi.org/10.1016/j.chroma.2011.10.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117.  https://doi.org/10.1021/ja909305t CrossRefPubMedGoogle Scholar
  24. 24.
    Mou Z, Li P, Bu Y, Wang W, Shi J, Song R (2008) Investigations of coupling characters in ionic liquids formed between the 1-ethyl-3-methylimidazolium cation and the glycine anion. J Phys Chem B 112(16):5088–5097.  https://doi.org/10.1021/jp711358r CrossRefPubMedGoogle Scholar
  25. 25.
    Mu X, Qi L, Zhang H, Shen Y, Qiao J, Ma H (2012) Ionic liquids with amino acids as cations: novel chiral ligands in chiral ligand-exchange capillary electrophoresis. Talanta 97:349–354.  https://doi.org/10.1016/j.talanta.2012.04.044 CrossRefPubMedGoogle Scholar
  26. 26.
    Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399.  https://doi.org/10.1021/ja043451i CrossRefPubMedGoogle Scholar
  27. 27.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084.  https://doi.org/10.1021/cr980032t CrossRefPubMedGoogle Scholar
  28. 28.
    Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576.  https://doi.org/10.1021/cr1003248 CrossRefPubMedGoogle Scholar
  29. 29.
    Yuvaraj SVJ, Zhdanov RK, Belosludov RV, Belosludov VR, Subbotin OS, Kanie K, Funaki K, Muramatsu A, Nakamura T, Kawazoe Y (2015) Solvation mechanism of task-specific ionic liquids in water: a combined investigation using classical molecular dynamics and density functional theory. J Phys Chem B 119(40):12894–12904.  https://doi.org/10.1021/acs.jpcb.5b05945 CrossRefPubMedGoogle Scholar
  30. 30.
    Prabhu Charan KT, Pothanagandhi N, Vijayakrishna K, Sivaramakrishna A, Mecerreyes D, Sreedhar B (2014) Poly(ionic liquids) as “smart” stabilizers for metal nanoparticles. Eur Polym J 60:114–122.  https://doi.org/10.1016/j.eurpolymj.2014.09.004 CrossRefGoogle Scholar
  31. 31.
    Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46(4):1124–1159.  https://doi.org/10.1039/c6cs00620e CrossRefPubMedGoogle Scholar
  32. 32.
    Tao G-h, He L, W-s L, Xu L, Xiong W, Wang T, Kou Y (2006) Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem 8(7):639–646.  https://doi.org/10.1039/b600813e CrossRefGoogle Scholar
  33. 33.
    Li T, Yang Q, Ding H, Li J, Peng C, Liu H (2015) Amino acid based ionic liquids as additives for the separation of an acetonitrile and water azeotropic mixture: COSMO-RS prediction and experimental verification. Ind Eng Chem Res 54(48):12143–12149.  https://doi.org/10.1021/acs.iecr.5b02828 CrossRefGoogle Scholar
  34. 34.
    Rao SS, Bejoy NB, Gejji SP (2015) Hydrogen bonding, 1H NMR, and molecular electron density topographical characteristics of ionic liquids based on amino acid cations and their ester derivatives. J Phys Chem A 119(32):8752–8764.  https://doi.org/10.1021/acs.jpca.5b04659 CrossRefPubMedGoogle Scholar
  35. 35.
    Liu X, Zhou G, Zhang S, Wu G (2010) Molecular simulation of imidazolium amino acid-based ionic liquids. Mol Simul 36(14):1123–1130.  https://doi.org/10.1080/08927022.2010.497923 CrossRefGoogle Scholar
  36. 36.
    Tietze AA, Bordusa F, Giernoth R, Imhof D, Lenzer T, Maaß A, Mrestani-Klaus C, Neundorf I, Oum K, Reith D, Stark A (2013) On the nature of interactions between ionic liquids and small amino-acid-based biomolecules. ChemPhysChem 14(18):4044–4064.  https://doi.org/10.1002/cphc.201300736 CrossRefPubMedGoogle Scholar
  37. 37.
    Wu Y, Zhang T (2009) Structural and electronic properties of amino acid based ionic liquids: a theoretical study. J Phys Chem A 113(46):12995–13003.  https://doi.org/10.1021/jp906465h CrossRefPubMedGoogle Scholar
  38. 38.
    Li W, Wu X, Qi C, Rong H, Gong L (2010) Study on the relationship between the interaction energy and the melting point of amino acid cation based ionic liquids. J Mol Struct THEOCHEM 942(1):19–25.  https://doi.org/10.1016/j.theochem.2009.11.027 CrossRefGoogle Scholar
  39. 39.
    Gao H, Zhang Y, Wang H-J, Liu J, Chen J (2010) Theoretical study on the structure and cation−anion interaction of amino acid cation based amino acid ionic liquid [pro]+[NO3]−. J Phys Chem A 114(37):10243–10252.  https://doi.org/10.1021/jp104775z CrossRefPubMedGoogle Scholar
  40. 40.
    Rao SS, Gejji SP (2016) Electronic structure, NMR, spin–spin coupling, and noncovalent interactions in aromatic amino acid based ionic liquids. J Phys Chem A 120(28):5665–5684.  https://doi.org/10.1021/acs.jpca.6b03985 CrossRefPubMedGoogle Scholar
  41. 41.
    Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580.  https://doi.org/10.1016/j.electacta.2006.03.016 CrossRefGoogle Scholar
  42. 42.
    Khan NA, Hasan Z, Jhung SH (2014) Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization. Chem Eur J 20(2):376–380.  https://doi.org/10.1002/chem.201304291 CrossRefPubMedGoogle Scholar
  43. 43.
    Lei Z, Dai C, Zhu J, Chen B (2014) Extractive distillation with ionic liquids: a review. AICHE J 60(9):3312–3329.  https://doi.org/10.1002/aic.14537 CrossRefGoogle Scholar
  44. 44.
    Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751.  https://doi.org/10.1021/ie8016237 CrossRefGoogle Scholar
  45. 45.
    Tawa GJ, Topol IA, Burt SK (1999) Chapter 9 - The calculation of relative binding thermodynamics of molecular associations in aqueous solvents. In: Leszczynski J (ed) Theoretical and Computational Chemistry, vol 8. Elsevier, pp 325–368.  https://doi.org/10.1016/S1380-7323(99)80084-3
  46. 46.
    Carda–Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375(2):191–199.  https://doi.org/10.1007/s00216-002-1684-1 CrossRefPubMedGoogle Scholar
  47. 47.
    Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107(25):6170–6178.  https://doi.org/10.1021/jp0275894 CrossRefGoogle Scholar
  48. 48.
    Chaban VV, Fileti EE (2015) Mixtures of amino-acid based ionic liquids and water. J Mol Model 21(9):236.  https://doi.org/10.1007/s00894-015-2783-1 CrossRefPubMedGoogle Scholar
  49. 49.
    Rao SS, Gejji SP (2015) Molecular insights accompanying aggregation in amino acid ionic liquids. Comput Theor Chem 1057(Supplement C):24–38.  https://doi.org/10.1016/j.comptc.2015.01.012 CrossRefGoogle Scholar
  50. 50.
    Roohi H, Khyrkhah S (2015) Quantum chemical studies on nanostructures of the hydrated methylimidazolium–based ionic liquids. J Mol Model 21(1):1.  https://doi.org/10.1007/s00894-014-2561-5 CrossRefPubMedGoogle Scholar
  51. 51.
    Latif MAM, Micaêlo N, Abdul Rahman MB (2014) Solvation free energies in [bmim]-based ionic liquids: anion effect toward solvation of amino acid side chain analogues. Chem Phys Lett 615(Supplement C):69–74.  https://doi.org/10.1016/j.cplett.2014.08.073 CrossRefGoogle Scholar
  52. 52.
    Zhu X, Ai H (2016) Theoretical insights into the properties of amino acid ionic liquids in aqueous solution. J Mol Model 22(7):152.  https://doi.org/10.1007/s00894-016-3009-x CrossRefPubMedGoogle Scholar
  53. 53.
    Chiappe C, Capraro D, Conte V, Pieraccini D (2001) Stereoselective halogenations of alkenes and alkynes in ionic liquids. Org Lett 3(7):1061–1063.  https://doi.org/10.1021/ol015631s CrossRefPubMedGoogle Scholar
  54. 54.
    Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. general formalism. J Chem Phys 132(11):114110.  https://doi.org/10.1063/1.3359469 CrossRefPubMedGoogle Scholar
  55. 55.
    Marenich AV, Cramer CJ, Truhlar DG (2013) Generalized born solvation model SM12. J Chem Theory Comput 9(1):609–620.  https://doi.org/10.1021/ct300900e CrossRefPubMedGoogle Scholar
  56. 56.
    Stefan G (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799.  https://doi.org/10.1002/jcc.20495 CrossRefGoogle Scholar
  57. 57.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104.  https://doi.org/10.1063/1.3382344 CrossRefPubMedGoogle Scholar
  58. 58.
    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967.  https://doi.org/10.1002/jcc.1056 CrossRefGoogle Scholar
  59. 59.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian. Gaussian, Inc., Wallingford, CT, USA, p 09Google Scholar
  60. 60.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928.  https://doi.org/10.1021/cr00005a013 CrossRefGoogle Scholar
  61. 61.
    Popelier PLA (1994) An analytical expression for interatomic surfaces in the theory of atoms in molecules. Theor Chim Acta 87(6):465–476.  https://doi.org/10.1007/bf01127809 CrossRefGoogle Scholar
  62. 62.
    Kagimoto J, Taguchi S, Fukumoto K, Ohno H (2010) Hydrophobic and low-density amino acid ionic liquids. J Mol Liq 153(2):133–138.  https://doi.org/10.1016/j.molliq.2010.02.002 CrossRefGoogle Scholar
  63. 63.
    Li ZW, Wu WS, Du ZY, Hao XY (2013) Structure and interaction between the [BMIM][ala] alanine anion and the 1-butyl-3-methylimidazolium cation in ion pairs. J Struct Chem 54(4):676–683.  https://doi.org/10.1134/s0022476613040045 CrossRefGoogle Scholar
  64. 64.
    Senthilkumar L, Ghanty TK, Ghosh SK, Kolandaivel P (2006) Hydrogen bonding in substituted formic acid dimers. J Phys Chem A 110(46):12623–12628.  https://doi.org/10.1021/jp061285q CrossRefPubMedGoogle Scholar
  65. 65.
    Umadevi V, Senthilkumar L, Kolandaivel P (2013) Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Mol Simul 39(11):908–921.  https://doi.org/10.1080/08927022.2013.777840 CrossRefGoogle Scholar
  66. 66.
    Karthika M, Senthilkumar L, Kanakaraju R (2012) Theoretical studies on hydrogen bonding in caffeine–theophylline complexes. Comput Theor Chem 979:54–63.  https://doi.org/10.1016/j.comptc.2011.10.015 CrossRefGoogle Scholar
  67. 67.
    Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33(30):2363–2379.  https://doi.org/10.1002/jcc.23060 CrossRefPubMedGoogle Scholar
  68. 68.
    Senthilkumar L, Ghanty TK, Ghosh SK (2005) Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide. J Phys Chem A 109(33):7575–7582.  https://doi.org/10.1021/jp052304j CrossRefPubMedGoogle Scholar
  69. 69.
    Mohajeri A, Ashrafi A (2011) Structure and electronic properties of amino acid ionic liquids. J Phys Chem A 115(24):6589–6593.  https://doi.org/10.1021/jp1093965 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations