Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 201–211 | Cite as

Laser ionization of solid RDX: a density functional theory study

  • F. A. AkinEmail author
  • Güven Kıyak
Article
  • 64 Downloads

Abstract

Structural changes induced via ionization in an RDX lattice have been studied by using optimized [(RDX)2]0 conformers comprising eight combinations of four RDX isomers using DFT. Structures, dissociation enthalpy, and free energies of the resulting [(RDX)2]·+ clusters are calculated. The gas-phase and medium polarizable continuum model (PCM) calculations of the most stable [(RDX)2]·+ cluster produced similar structural results. Electron removal caused 75% of the [(RDX)2]·+ conformers to be unstable in their neutral isomeric composition and orientation. Charge distributions and structural factors indicate that [(RDX)2]·+ are in the general form RDX·+·RDX. Ionization causes charge polarization, hydrogen transfer, N-N dissociation, and assisted HONO formation in solid RDX. The assisted HONO formation occurs via and suggests hydrogen mobility within [(RDX)2]·+, causing a stabilization by a minimum of 114 kJ/mol more than the other conformers. The RDX conformational identity is a determining factor in the emerging dissociation pathways. The energy costs of ion-neutral dissociation are comparable to the hydrogen transfer and NO2 loss processes. Ionization of the RDX surface is expected to produce NO2 and HONO precursors of the NO+ ion observed previously.

Keywords

RDX Dimer Cation Mass spectrometry DFT Crystal 

Notes

Acknowledgments

The author would also like to thank Dr. Tereza Varnalı for helpful discussions.

Funding information

This research has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK) (110T485).

Supplementary material

11224_2018_1191_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1410 kb)

References

  1. 1.
    Stals J (1971). Trans Faraday Soc 67:1768–1775CrossRefGoogle Scholar
  2. 2.
    Bradley JN, Butler AK, Capey WD, Gilbert JR (1977). J Chem Soc Faraday Trans 1:73 1789-1795Google Scholar
  3. 3.
    Farber M (1992). Mass Spectrom Rev 11:137–152CrossRefGoogle Scholar
  4. 4.
    Bulusu S, Axenrod T, Milne GWA (1970). Org Mass Spectrom 3:13–21CrossRefGoogle Scholar
  5. 5.
    Hankin SM, Tasker AD, Robson L, Ledingham KWD, Fang X, McKenna P, McCanny T, Singhal RP, Kosmidis C, Tzallas P, Jaroszynski DA, Jones DR, Issac RC, Jamison S (2002). Rapid Commun Mass Spectrom 16:111–116CrossRefGoogle Scholar
  6. 6.
    Gillis RG, Lacey MJ, Shannon JS (1974). Org Mass Spectrom 9:359–364CrossRefGoogle Scholar
  7. 7.
    Yinon J, Harvan DJ, Hass JR (1982). Org Mass Spectrom 17:321–326CrossRefGoogle Scholar
  8. 8.
    Yinon J (1987). Org Mass Spectrom 22:501–505CrossRefGoogle Scholar
  9. 9.
    Zhao X, Hintsa EJ, Lee YT (1988). J Chem Phys 88:801–810CrossRefGoogle Scholar
  10. 10.
    Snyder AP, Kremer JH, Liebman SA, Schroeder MA, Fifer RA (1989). Org Mass Spectrom 24:15–21CrossRefGoogle Scholar
  11. 11.
    Choi M, Kim H, Chung C (1995). J Phys Chem 99:15785–15789CrossRefGoogle Scholar
  12. 12.
    Cabalo J, Sausa R (2003). Appl Spectrosc 57:1196–1199CrossRefGoogle Scholar
  13. 13.
    Maharrey S, Behrens RJ (2005). Phys Chem A 109:11236–11249CrossRefGoogle Scholar
  14. 14.
    Guo YQ, Greenfield M, Bernstein ER (2005). J Chem Phys 122:244310CrossRefGoogle Scholar
  15. 15.
    Greenfield M, Guo YQ, Bernstein ER (2006). Chem Phys Lett 430:277–281CrossRefGoogle Scholar
  16. 16.
    Politzer P, Yuguang M (2004). Int J Quantum Chem 100:733–739CrossRefGoogle Scholar
  17. 17.
    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005). J Phys Chem A 109:2964–2970CrossRefGoogle Scholar
  18. 18.
    Harris NJ, Lammertsma K (1997). J Am Chem Soc 119:6583–6589CrossRefGoogle Scholar
  19. 19.
    Chakraborty D, Muller RP, Dasgupta S, Goddard III WA (2001). J Phys Chem A 105:1302–1314CrossRefGoogle Scholar
  20. 20.
    Bhattacharya A, Bernstein ER (2011). J Phys Chem A 115:4135–4147CrossRefGoogle Scholar
  21. 21.
    Brill TB, Beckstead MC, Flanagan JE, Lin MC, Litzinger TA, Waesche RHW, Wight CA (2002). J Propuls Power 18:824–834CrossRefGoogle Scholar
  22. 22.
    Lyman JL, Liau YC, Brand HV (2002). Combust Flame 130:185–203CrossRefGoogle Scholar
  23. 23.
    Lewis JP (2003). Chem Phys Lett 371:588–593CrossRefGoogle Scholar
  24. 24.
    Tsiaousis D, Munn RW, Smith PJ, Popelier PLA (2004). Chem Phys 305:317–323CrossRefGoogle Scholar
  25. 25.
    Rice BM, Byrd EFC (2006). J Mater Res 21:2444–2452CrossRefGoogle Scholar
  26. 26.
    Byrd EFC, Scuseria GE, Chabalowski CF (2004). J Phys Chem B 108:13100–13106CrossRefGoogle Scholar
  27. 27.
    Doyle RJ, Campana JE, Eyler JR (1985). J Phys Chem 89:5285–5288CrossRefGoogle Scholar
  28. 28.
    Campana JE, Doyle RJ (1985). J Chem Soc Chem Commun 45–46Google Scholar
  29. 29.
    Doyle RJ, Campana JE (1985). J Phys Chem 89:4251–4256CrossRefGoogle Scholar
  30. 30.
    White JD, Akin FA, Oser H, Crosley DR (2011). Appl Optics 50:74–81CrossRefGoogle Scholar
  31. 31.
    Bhattacharya A, Bernstein ER (2009). J Phys Chem A 113:811–823CrossRefGoogle Scholar
  32. 32.
    Filatova EO, Konashuk AS (2015). J Phys Chem C 119:20755–20761CrossRefGoogle Scholar
  33. 33.
    CRC Handbook of Chemistry and Physics, Rumble JR (ed), Electron Work Function of the Elements CRC Press, Boca Raton, FL. http://www.hbcponline.com. Accessed 05 May 2018
  34. 34.
    Akin FA (2016). Mol Phys 114:3277–3293CrossRefGoogle Scholar
  35. 35.
    Cheng H, Huang Z, Chen T (2016). Mol Phys 114:1931–1938CrossRefGoogle Scholar
  36. 36.
    Kautek W, Krueger J (1994) SPIE 2207 Laser Materials Processing: Industrial and Microelectronic Applications 600-611Google Scholar
  37. 37.
    Russo RE, Mao X, Mao SS (2002). Anal Chem 70AGoogle Scholar
  38. 38.
    Keldysh LV (1964). Sov Phys JETP 47:1945–1957Google Scholar
  39. 39.
    Mézel C, Bourgeade A, Hallo L (2010). Phys Plasmas 17:113504CrossRefGoogle Scholar
  40. 40.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  41. 41.
    Akın FA, Kıyak G, manuscript in preparation Google Scholar
  42. 42.
    Nayak PK, Periasamy N (2009). Org Electron 10:1396–1400CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03: Revision D.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  44. 44.
    Merrick JP, Moran D, Radom L (2007). J Phys Chem A 111:11683–11700CrossRefGoogle Scholar
  45. 45.
    Singh UC, Kollman PA (1984). J Comput Chem 5:129–144CrossRefGoogle Scholar
  46. 46.
    Besler BH, Merz Jr KM, Kollman PA (1990). J Comput Chem 11:431–439CrossRefGoogle Scholar
  47. 47.
    Morino Y, Tanimoto M, Saito S, Hirota E, Awata R, Tanaka T (1983). J Mol Spectrosc 98:331–348CrossRefGoogle Scholar
  48. 48.
    Shishkov IF, El’fimova TL, Vilkov LV (1992). J Struct Chem 33:34–38CrossRefGoogle Scholar
  49. 49.
    Karpowicz RJ, Brill TB (1983). J Phys Chem 87:2109–2112CrossRefGoogle Scholar
  50. 50.
    Capellos C, Papagiannakopoulos P, Liang Y-L (1989). Chem PhysLett 164:533–538Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryBoğaziçi UniversityIstanbulTurkey

Personalised recommendations