Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 289–301 | Cite as

The electron affinities of TCNE and TCNQ: the effect of silicon substitution

  • Steven M. Maley
  • Crystal Esau
  • Robert C. MawhinneyEmail author
Original Research
  • 126 Downloads

Abstract

The cyanocarbons tetracyanoethylene (TCNE) and tetracyanoquinodimethane (TCNQ) are important electron acceptors used in organic electronic applications. A common approach to enhancing their performance is by structural modification with previous studies focusing on substituting the cyano ligands or annular moiety. In this work, we assess the effect of hypovalent substitution, swapping carbon for silicon, on the potential energy surfaces and adiabatic electron affinities (AEAs). Si-substitution generally enhances AEA, and in the case of TCNQ stabilizes an open-shell singlet diradical state. Such findings may find value in the design of new materials based on the cyanocarbon platform.

Keywords

Adiabatic electron affinity Silicon Isovalent substitution TCNE TCNQ DFT Symmetry breaking 

Notes

Acknowledgements

The authors would like to thank SHARCNET and Compute Canada for computational resources, as well as Dr. Qadir Timerghazin for performing the Molpro calculations. SMM acknowledges a grant through the Indigenous and Northern Affairs Canada (INAC) Post-Secondary Student Support Program. Finally, the authors would like to thank Lakehead University and Natural Sciences and Engineering Research Council (NSERC) for support.

Supplementary material

11224_2018_1186_MOESM1_ESM.docx (5.7 mb)
ESM 1 (DOCX 5819 kb)

References

  1. 1.
    Chowdhury S, Kebarle P (1986) J Am Chem Soc 108:5453CrossRefGoogle Scholar
  2. 2.
    Compton RN, Cooper CD (1977) J Chem Phys 66:4325CrossRefGoogle Scholar
  3. 3.
    Zhu G et al (2015) J Chem Phys 143:221102Google Scholar
  4. 4.
    Milián B et al (2003) Chem Phys Lett 375:376CrossRefGoogle Scholar
  5. 5.
    Milián B et al (2005) Chem Phys Chem 6:503CrossRefGoogle Scholar
  6. 6.
    Milián B et al (2004) J Mol Struct (THEOCHEM) 709:97CrossRefGoogle Scholar
  7. 7.
    Milián B et al (2004) Chem Phys Lett 391:148CrossRefGoogle Scholar
  8. 8.
    Ferraris J et al (1973) J Am Chem Soc 95(3):948CrossRefGoogle Scholar
  9. 9.
    Anderson PW, Lee PA (1973) Solid State Commun 13(5):595CrossRefGoogle Scholar
  10. 10.
    Miller JS (1987) et. al. J Am Chem Soc 109:769CrossRefGoogle Scholar
  11. 11.
    Walzer K et al (2007) Chem Rev 107:1233CrossRefGoogle Scholar
  12. 12.
    Maennig B et al (2001) Phys Rev B 64:195208CrossRefGoogle Scholar
  13. 13.
    Brinkmann NR (2001) et al. Mol Phys 99(8):663CrossRefGoogle Scholar
  14. 14.
    Martín N (1997) et al. J Mater Chem 7(9):1661CrossRefGoogle Scholar
  15. 15.
    Parkin SSP et al (1981) Phys C: Solid State Phys 14:5305CrossRefGoogle Scholar
  16. 16.
    Fukuda K et al (2015) J Phys Chem C 119(2):1188CrossRefGoogle Scholar
  17. 17.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  18. 18.
    Lee C et al (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  19. 19.
    Hamprecht FA et al (1998) J Chem Phys 109:6264CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215CrossRefGoogle Scholar
  21. 21.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  22. 22.
    Perdew JP et al (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  23. 23.
    Tao JM et al (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  24. 24.
    Becke AD et al (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  25. 25.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  26. 26.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  27. 27.
    Staroverov VN et al (2003) J Chem Phys 119:12129CrossRefGoogle Scholar
  28. 28.
    Yanai T et al (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  30. 30.
    Baurenschmidt R, Ahlrics R (1996) J Chem Phys 104:9047CrossRefGoogle Scholar
  31. 31.
    Becker P et al (1973) J Am Chem Soc 95(23):7604CrossRefGoogle Scholar
  32. 32.
    Hope H (1968) Acta Chem Scand 22(3):1057CrossRefGoogle Scholar
  33. 33.
    Bock H et al (1992) Z Anorg Allg Chem 614:109CrossRefGoogle Scholar
  34. 34.
    Zheludev A et al (1994) J Am Chem Soc 116:7243CrossRefGoogle Scholar
  35. 35.
    Herbstein FH Perspectives in structural chemistry, vol IV. Wiley, New York, p 166Google Scholar
  36. 36.
    Long RE et al (1965) Acta Cryst 18:932CrossRefGoogle Scholar
  37. 37.
    Hoekstra A et al (1972) Acta Crystallogr B:14Google Scholar
  38. 38.
    Kistenmacher B et al (1974) Acta Crystallogr B 30:763CrossRefGoogle Scholar
  39. 39.
    Miller J et al (1987) J Chem Phys 91:4344CrossRefGoogle Scholar
  40. 40.
    The Post-HF methods selected for visualization in Figure 3 and Figure 4 are those that deviated the least from the experimental value. The remaining methods plot off-scaleGoogle Scholar
  41. 41.
    Curtiss LA et al (1998) J Chem Phys 109:42CrossRefGoogle Scholar
  42. 42.
    Vikramaditya T, Lin S (2017) J Comput Chem 38(21):1844CrossRefGoogle Scholar
  43. 43.
    Bailleux S et al (1996) J Chem Phys 35:2513Google Scholar
  44. 44.
    Bailleux S et al (1997) J Chem Phys 106:10016CrossRefGoogle Scholar
  45. 45.
    Fischer R, Power P (2010) Chem Rev 110(7):3877CrossRefGoogle Scholar
  46. 46.
    MOLPRO. Optimization and frequency calculation performed at CCSD(T)-F12/aug-cc-pV(T+d)Z level of theory using numerical gradientsGoogle Scholar
  47. 47.
    Dakkouri M, Oberhammer H (1974) Zeitschrift Für Naturforschung A 29(3):513CrossRefGoogle Scholar
  48. 48.
    Gräfenstein J, Cremer D (2001) Mol Phys 99(11):981CrossRefGoogle Scholar
  49. 49.
    Ortiz RP et al (2007) Angew Chem Int Ed 46:9057CrossRefGoogle Scholar
  50. 50.
    Trinquier G, Malrieu J (2014) Chem Eur J 20:814Google Scholar
  51. 51.
    Chikamatsu M et al (2007) Appl Phys Lett 119(2):1188Google Scholar
  52. 52.
    Morita Y et al (2011) Nat Mater 10:947CrossRefGoogle Scholar
  53. 53.
    Lee J et al (2013) Acc Chem Res 46:3544Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryLakehead UniversityThunder BayCanada

Personalised recommendations