Advertisement

Comparison of radical scavenging behavior of chromones dihydrogenistein and demethyltexasin—a DFT approach

  • K. Anbazhakan
  • K. Sadasivam
  • R. Praveena
Original Research
  • 43 Downloads

Abstract

The present work deals with the validation of radical scavenging behavior of two identical chromones: 4′,5,7 trihydroxy isoflavone dihydrogenistein (DGT) and 4′,6,7 trihydroxy isoflavone demethyltexasin (DMT) through structural activity analysis to study the influence of H atom on the radical scavenging behavior. Structural optimization and thermochemical calculations for the studied chromones is supported by DFT under the correlation functional B3LYP and M062X under 6-311G(d,p) basis set using Gaussian 09 package. Computations are carried out in gas phase and polar environment. Comparative analyses of radical scavenging ability of the two isoflavones are validated with the aid of two different levels of theory in three different environments which facilitates the antioxidant mechanism. Higher binding probability of DMT than DGT towards the selected enzyme target ALOX5 is observed in molecular docking analysis. This work paves a way to the elucidation of the beneficial effects on health of these compounds.

Keywords

DFT Chromones Frontier molecular orbital analysis and molecular docking 

Notes

Funding information

Funding was provided by Science and Engineering Research Board, Department of Science and Technology (DST-SERB), Government of India, through the research grant (EMR/2016/002892).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Tawfik HA, Ewies EF, El-Hamouly WS (2014) Synthesis of chromones and their applications during the last ten years during the last ten years. IJRPC 4(4):1046–1085Google Scholar
  2. 2.
    Ahmad A, Ramasamy K, Majeed ABA, Mani V (2015) Enhancement of b-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm Biol 53:758–766CrossRefGoogle Scholar
  3. 3.
    Klus K, Borger-Papendorf G, Barz W (1993) Formationof 6,7,4′-trihydroxyisoflavone (factor 2) from soybean seedisoflavones by bacteria isolated from tempe. Phytochemistry 34:979–981CrossRefGoogle Scholar
  4. 4.
    Toscano M, Russo N (2016) Soybean aglycones antioxidant activity. A theoretical investigation. Computational and Theoretical Chemistry 1077:119–124CrossRefGoogle Scholar
  5. 5.
    Lechner D, Gibbons S, Bucar F (2008) Plant phenoliccompounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 62:345–348CrossRefGoogle Scholar
  6. 6.
    Novy P, Urban J, Vadlejch J, Kokoska L (2011) Invitrosynergistic effects of baicalin with oxytetracycline and tetracycline against Staphylococcus aureus. J Antimicrob Chemother 66:1298–1300CrossRefGoogle Scholar
  7. 7.
    Lengyel J, Rimarcík J, Vagánek A, Klein E (2013) On the radical scavenging activity of isoflavones: thermodynamics of O–H bond cleavage. Phys Chem Chem Phys 15:10895–10903CrossRefGoogle Scholar
  8. 8.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  9. 9.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  10. 10.
    Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N (2016) Food antioxidants: chemical insights at the molecular level. Annu Rev Food Sci Technol 7:335–352.  https://doi.org/10.1146/annurev-food-041715-033206 CrossRefPubMedGoogle Scholar
  11. 11.
    Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem B 108:92–94CrossRefGoogle Scholar
  12. 12.
    Deepha V, Praveena R (2015) Sadasivam. K J Mol Struct 1082:131e142Google Scholar
  13. 13.
    Senthilkumar K (2011) Kumaresan. R Int J Quantum Chem 111:4483e4496Google Scholar
  14. 14.
    Luque FJ, Lopez JM (2000) Orozco. M Theor Chem Acc 103:343CrossRefGoogle Scholar
  15. 15.
    Deepha V, Praveena R, Sivakumar R, Sadasivam K (2014). Spectrochim Acta A 121:737e745CrossRefGoogle Scholar
  16. 16.
    Scrocco E (1979) Tomasi. J Adv Quantum Chem 11:115e193Google Scholar
  17. 17.
    Jeevitha D, Sadasivam K, Praveena R, Jayaprakasam R (2016) DFT study of glycosyl group reactivity in quercetin derivatives. J Mol Struct 1120:15e24CrossRefGoogle Scholar
  18. 18.
    Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, Comporti M (1997) Protection against oxidative damage oferythrocyte membranes by the flavonoid quercetin and its relation toiron chelating activity. FEBS Lett 416:123–129CrossRefGoogle Scholar
  19. 19.
    Elliott AJ, Scheiber SA, Thomas C, Pardini RS (1992) Inhibition of glutathione reductase by flavonoids. Biochem Pharmacol 44:1603–1608CrossRefGoogle Scholar
  20. 20.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592CrossRefGoogle Scholar
  21. 21.
    Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching Tetrahedra algorithm. J Mol Graph Model 38:314–323CrossRefGoogle Scholar
  22. 22.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  23. 23.
    Gammelmark A et al (2017) Interactions between 5-lipoxygenase polymorphisms and adipose tissue contents of arachidonic and eicosapentaenoic acids do not affect risk of myocardial infarction in middle-aged men and women in a Danish case-cohort study. J NutrGoogle Scholar
  24. 24.
    Gfeller D, Michielin O, Zoete V (2013) Shaping the interaction landscape of bioactive molecules. Bioinformatics 29:3073–3079CrossRefGoogle Scholar
  25. 25.
    Mendoza-Wilson AM, Carmelo-Luna FJ, Astiazarán-García H, Pacheco-Moreno BI, Anduro-Corona I, Rascón-Durán ML DFT study of the physicochemical properties of A- and B-type procyanidin oligomers. J Theor Comput Chem.  https://doi.org/10.1142/S0219633616500693 CrossRefGoogle Scholar
  26. 26.
    Häfner A-K, Beilstein K, Graab P, Ball A-K, Saul MJ, Hofmann B et al (2016) Identification and characterization of a new protein isoform of human 5-lipoxygenase. PLoS One 11(11):e0166591CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Quantum Computing and Phytochemistry Research LaboratoryBannari Amman Institute of TechnologySathyamangalamIndia
  2. 2.Department of ChemistryBannari Amman Institute of TechnologySathyamangalamIndia
  3. 3.Department of PhysicsBannari Amman Institute of TechnologySathyamangalamIndia

Personalised recommendations