Are there analogues of the indenyl effect in larger ring systems: a DFT study of hydride attack on [Mn(CO)3(naphthalene)]+ and [Cr(CO)3(benzotropylium)]+
- 53 Downloads
Abstract
Two pairs of complexes, [Mn(CO)3(benzene)]+/[Mn(CO)3(naphthalene)]+ and [Cr(CO)3(tropylium)]+/[Cr(CO)3(benzotropylium)]+, have been used as a platform to establish the extent to which the well-known ‘indenyl effect’ translates into other bicyclic ligand systems. Density functional theory (DFT) suggests that the ‘naphthalene effect’ is minimal, the pathway for hydride reduction of [Mn(CO)3(naphthalene)]+ resembling closely that for the benzene analogue. In the benzotropylium system, in contrast, stabilisation of an η5 coordination mode through aromatisation of the six-membered ring plays a similar role to stabilisation of η3 in the indenyl effect. The greater influence of aromatisation in the five- and seven-membered ring systems stems from the presence of formal charge on the ligands in these cases: localisation of this charge on a subset of the available carbon atoms enhances the electrostatic component of the metal-ligand bond. This is particularly dramatic in the benzotropylium case, where the η7–η5 slippage corresponds to a formal 2-electron reduction of the ligand from [C7H7]+ to [C7H7]−.
Keywords
Indenyl effect DFT Naphthalene effect Tropylium and hydride attackNotes
Acknowledgments
The author is indebted to Professor J. E. McGrady and his group at theoretical chemistry laboratory, Oxford University, for their assistance throughout the work.
Supplementary material
References
- 1.Ahmed H, McGrady JE (2008). J Organomet Chem 693:3697–3702CrossRefGoogle Scholar
- 2.Brown DA, Glass WK, Ubeid MT (1994). Inorg Chim Acta 89:L47–L48CrossRefGoogle Scholar
- 3.Ahmed H, Brown DA, Fitzpatrick NJ, Glass WK (1989). Inorg Chim Acta 164:5–6CrossRefGoogle Scholar
- 4.Ahmed H, Brown DA, Fitzpatrick NJ, Glass WK (1991). J Organomet Chem 418:C14–C16CrossRefGoogle Scholar
- 5.Brown DA, Glass WK, Salama MM (1994). J Organomet Chem 474:129–132CrossRefGoogle Scholar
- 6.Rerek ME, Basolo FJ (1984). J Am Chem Soc 106:5908–5912CrossRefGoogle Scholar
- 7.Calhorda MJ, Veiros LF (1999). Coord Chem Rev 185:37–51CrossRefGoogle Scholar
- 8.Calhorda MJ, Romao CC, Veiros LF (2002). Chem Eur J 8:868–875CrossRefGoogle Scholar
- 9.Gomes CSB, Costa SI, Silva LC, Jimenez-Tenorio M, Valerga P, Puerta MC (2018). P T Gomes Eur J Inorg Chem 2018:597–607CrossRefGoogle Scholar
- 10.Baker RW (2018). Organometallics 37:433–440CrossRefGoogle Scholar
- 11.Sun S, Yeung LK, Sweigart DA (1995). Organometallics 14:2613–2615CrossRefGoogle Scholar
- 12.Stanghellini PL, Diana E, Arrais A, Rossin A, Kettle SFA (2006). Organometallics 25:5024–5030CrossRefGoogle Scholar
- 13.Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley, New YorkGoogle Scholar
- 14.Frenking G, Fröhlich N (2000). Chem Rev 100:717–−774CrossRefGoogle Scholar
- 15.Zhou M, Andrews L (2001). C W Bauschlicher Chem Rev 101:1931–1962CrossRefGoogle Scholar
- 16.Becke AD (1988). Phys Rev A 38:3098–3100CrossRefGoogle Scholar
- 17.Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789CrossRefGoogle Scholar
- 18.Miehich B, Savin A, Stoll H (1989). Chem Phys Lett 157:200–206CrossRefGoogle Scholar
- 19.Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990). Theor Chim Acta 77:123–141CrossRefGoogle Scholar
- 20.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.Pople. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT., 2013 Google Scholar
- 21.Dapprich S, Frenking G (1995). J Phys Chem 99:9352–9362CrossRefGoogle Scholar
- 22.Chen LF (2012). J Comput Chem 33:580–592CrossRefGoogle Scholar
- 23.Davison A, Green M, Wilkinson G (1961). J Chem Soc:3172–3177Google Scholar
- 24.A. A. Ahmed. Ph.D. thesis, National University of Ireland., 1991Google Scholar
- 25.Winkhaus G, Pratt L, Wilkinson G (1960). J Chem Soc:3807–3813Google Scholar
- 26.Thompson RL, Lee S, Rheingold AL, Cooper NJ (1991). Organometallics 10:1657–1659CrossRefGoogle Scholar
- 27.Reingold JA, Virkaitis KL, Carpenter GB, Sun S, Weigart SDA, Czech PT, Overly KR (2005). J Am Chem Soc:12711146–12711158Google Scholar
- 28.Behrens U, Kopf J, Lal K, Watts WE (1984). J Organomet Chem 276:193–198CrossRefGoogle Scholar
- 29.Veiros LF (2000). Organometallics 19:3127–3136CrossRefGoogle Scholar
- 30.Chatt J, Duncanson LD (1953). J Chem Soc:2939–2947Google Scholar