Computational fragment-based design of Wee1 kinase inhibitors with tricyclic core scaffolds
- 187 Downloads
Abstract
Wee1 is cell cycle protein comprising a kinase domain and is a validated cancer target. We have designed molecules with variable tricyclic core scaffolds [6-6-5] system and extended them based on the chemical space available in the active site of Wee1 kinase using de novo drug design. The core scaffolds and linking fragments were extracted from pharmacophore-based virtual screening of ZINC and PubChem databases and Ludi library. These molecules bind the hinge region of kinase active site and form hydrogen bonds as confirmed from molecular docking, molecular dynamics simulations, and MM_PBSA calculations. When compared with reference inhibitors, AZD1775 and PHA-848125, the de novo designed molecules also show good docking scores and stability, retained non-covalent interactions, and high binding free energies contributed from active site residues.
Keywords
Wee1 kinase Tricyclic system Scaffolds Fragments De novo design ADME Molecular docking Front and back pockets MD simulations Binding free energyNotes
Acknowledgements
The authors thank CMSD, University of Hyderabad for providing computational facilities. MA thanks Ministry of Higher Education & Scientific Research—Republic of Yemen.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This chapter does not contain any studies with human participants or animals performed by any of the authors.
Supplementary material
References
- 1.Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17(6):471–480PubMedGoogle Scholar
- 2.Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2004) Essential cell biology 2nd edn. Garland, New York, pp 156–157Google Scholar
- 3.Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709PubMedGoogle Scholar
- 4.Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133Google Scholar
- 5.Ronco C, Martin AR, Demange L, Benhida R (2017) ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. MedChemComm 8(2):295–319PubMedGoogle Scholar
- 6.Do K, Doroshow JH, Kummar S (2013) Wee1 kinase as a target for cancer therapy. Cell Cycle 12(19):3348–3353Google Scholar
- 7.Matheson CJ, Venkataraman S, Amani V, Harris PS, Backos DS, Donson AM, Wempe MF, Foreman NK, Vibhakar R, Reigan P (2016) A WEE1 inhibitor analog of AZD1775 maintains synergy with cisplatin and demonstrates reduced single-agent cytotoxicity in medulloblastoma cells. ACS Chem Biol 11(4):921–930PubMedGoogle Scholar
- 8.Hassan Baig M, Ahmad K, Roy S, Mohammad Ashraf J, Adil M, Haris Siddiqui M, Khan S, Amjad Kamal M, Provazník I, Choi I (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22(5):572–581Google Scholar
- 9.Squire CJ, Dickson JM, Ivanovic I, Baker EN (2005) Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure 13(4):541–550PubMedGoogle Scholar
- 10.Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P (2002) The protein data bank. Acta Crystallogr Sect D Biol Crystallogr 58(6):899–907Google Scholar
- 11.Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815PubMedGoogle Scholar
- 12.Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612Google Scholar
- 13.Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E (2017) Structural basis of wee kinases functionality and inactivation by diverse small molecule inhibitors. J Med Chem 60(18):7863–7875PubMedPubMedCentralGoogle Scholar
- 14.Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res 44(W1):W442–W448PubMedPubMedCentralGoogle Scholar
- 15.Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768PubMedPubMedCentralGoogle Scholar
- 16.Hiruma Y, Koch A, Hazraty N, Tsakou F, Medema RH, Joosten RP, Perrakis A (2017) Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures. J Biol Chem 292(35):14496–14504PubMedPubMedCentralGoogle Scholar
- 17.Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, Williams RL (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327(5973):1638–1642PubMedPubMedCentralGoogle Scholar
- 18.Glatthar R, Stojanovic A, Troxler T, Mattes H, Möbitz H, Beerli R, Blanz J, Gassmann E, Drückes P, Fendrich G, Gutmann S (2016) Discovery of imidazoquinolines as a novel class of potent, selective, and in vivo efficacious cancer Osaka thyroid (COT) kinase inhibitors. J Med Chem 59(16):7544–7560PubMedGoogle Scholar
- 19.Kolb P, Caflisch A (2006) Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J Med Chem 49(25):7384–7392PubMedGoogle Scholar
- 20.Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78PubMedGoogle Scholar
- 21.Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 19(8):876–877Google Scholar
- 22.Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J (2015) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213PubMedPubMedCentralGoogle Scholar
- 23.Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217Google Scholar
- 24.Wu G, Robertson DH, Brooks III CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562PubMedGoogle Scholar
- 25.Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DR, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2(5):317–324PubMedGoogle Scholar
- 26.Gelhaar DK, Bouzida D, Rejto PA, Parill L, Reddy MR (eds) (1999) In rational drug design: novel methodology and practical applications. American Chemical Society, Washington, pp 292–311Google Scholar
- 27.Muegge I, Martin YC (1999) A general and fast scoring function for protein–ligand interactions: a simplified potential approach. J Med Chem 42(5):791–804PubMedGoogle Scholar
- 28.Muegge I (2006) PMF scoring revisited. J Med Chem 49(20):5895–5902PubMedGoogle Scholar
- 29.Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25Google Scholar
- 30.Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86:2–10PubMedGoogle Scholar
- 31.Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1(1):8PubMedPubMedCentralGoogle Scholar
- 32.Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447PubMedGoogle Scholar
- 33.Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718Google Scholar
- 34.Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725PubMedPubMedCentralGoogle Scholar
- 35.da Silva AW, Vranken WF (2012) ACPYPE-antechamber python parser interface. BMC Res Notes 5(1):367Google Scholar
- 36.Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260PubMedGoogle Scholar
- 37.Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981). Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular Forces. The jerusalem symposia on quantum chemistry and biochemistry, vol 14. Springer, DordrechtGoogle Scholar
- 38.Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190Google Scholar
- 39.Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101PubMedGoogle Scholar
- 40.Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092Google Scholar
- 41.Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593Google Scholar
- 42.Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472Google Scholar
- 43.Kumari R, Kumar R, Open Source Drug Discovery Consortium, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962PubMedGoogle Scholar
- 44.Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson–Boltzmann surface area method. Mol Inform 31(2):114–122PubMedGoogle Scholar
- 45.Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717PubMedPubMedCentralGoogle Scholar
- 46.Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 daltons. Angew Chem Int Ed Engl 44(10):1504–1508PubMedGoogle Scholar
- 47.Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A 78(7):4046–4050PubMedPubMedCentralGoogle Scholar
- 48.Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15(9):605PubMedGoogle Scholar
- 49.Scott DE, Coyne AG, Hudson SA, Abell C (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51(25):4990–5003PubMedGoogle Scholar
- 50.Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20(4):497–507PubMedGoogle Scholar
- 51.Teague SJ (2011) Learning lessons from drugs that have recently entered the market. Drug Discov Today 16(9–10):398–411PubMedGoogle Scholar
- 52.Mitchell JB (2014) Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci 4(5):468–481PubMedPubMedCentralGoogle Scholar
- 53.Hu Y, Stumpfe D, Bajorath J (2016) Recent advances in scaffold hopping: mini perspective. J Med Chem 60(4):1238–1246PubMedGoogle Scholar
- 54.Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW (2011) Docking performance of fragments and druglike compounds. J Med Chem 54(15):5422–5431PubMedGoogle Scholar
- 55.Ichihara O, Barker J, Law RJ, Whittaker M (2011) Compound design by fragment-linking. Mol Inform 30(4):298–306PubMedGoogle Scholar
- 56.Squires MS, Feltell RE, Wallis NG, Lewis EJ, Smith DM, Cross DM, Lyons JF, Thompson NT (2009) Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol Cancer Ther 8(2):324–332PubMedGoogle Scholar
- 57.Howard S, Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL, Heathcote M (2008) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52(2):379–388Google Scholar
- 58.Sandanayaka V, Mamat B, Mishra RK, Winger J, Krohn M, Zhou LM, Keyvan M, Enache L, Sullins D, Onua E, Zhang J (2009) Discovery of 4-[(2 S)-2-{[4-(4-chlorophenoxy) phenoxy] methyl}-1-pyrrolidinyl] butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis. J Med Chem 53(2):573–585Google Scholar
- 59.Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105(8):3041–3046PubMedPubMedCentralGoogle Scholar
- 60.Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934PubMedGoogle Scholar
- 61.van Linden OP, Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2013) KLIFS: a knowledge-based structural database to navigate kinase–ligand interaction space. J Med Chem 57(2):249–277PubMedGoogle Scholar
- 62.Tong Y, Torrent M, Florjancic AS, Bromberg KD, Buchanan FG, Ferguson DC, Johnson EF, Lasko LM, Maag D, Merta PJ, Olson AM (2014) Pyrimidine-based tricyclic molecules as potent and orally efficacious inhibitors of wee1 kinase. ACS Med Chem Lett 6(1):58–62PubMedPubMedCentralGoogle Scholar
- 63.Kulagowski JJ, Blair W, Bull RJ, Chang C, Deshmukh G, Dyke HJ, Eigenbrot C, Ghilardi N, Gibbons P, Harrison TK, Hewitt PR (2012) Identification of imidazo-pyrrolopyridines as novel and potent JAK1 inhibitors. J Med Chem 55(12):5901–5921PubMedGoogle Scholar
- 64.Lim J, Taoka B, Otte RD, Spencer K, Dinsmore CJ, Altman MD, Chan G, Rosenstein C, Sharma S, Su HP, Szewczak AA (2011) Discovery of 1-amino-5H-pyrido[4,3-b]indol-4-carboxamide inhibitors of Janus kinase 2 (JAK2) for the treatment of myeloproliferative disorders. J Med Chem 54(20):7334–7349PubMedGoogle Scholar
- 65.Gopalsamy A, Shi M, Boschelli DH, Williamson R, Olland A, Hu Y, Krishnamurthy G, Han X, Arndt K, Guo B (2007) Discovery of dibenzo [c,f][2,7]naphthyridines as potent and selective 3-phosphoinositide-dependent kinase-1 inhibitors. J Med Chem 50(23):5547–5549PubMedGoogle Scholar
- 66.Northrup AB, Katcher MH, Altman MD, Chenard M, Daniels MH, Deshmukh SV, Falcone D, Guerin DJ, Hatch H, Li C, Lu W (2013) Discovery of 1-[3-(1-methyl-1H-pyrazol-4-yl)-5-oxo-5H-benzo[4,5]cyclohepta[1,2-b] pyridin-7-yl]-N-(pyridin-2-ylmethyl) methanesulfonamide (MK-8033): a specific c-Met/Ron dual kinase inhibitor with preferential affinity for the activated state of c-met. J Med Chem 56(6):2294–2310PubMedGoogle Scholar
- 67.Castanedo GM, Blaquiere N, Beresini M, Bravo B, Brightbill H, Chen J, Cui HF, Eigenbrot C, Everett C, Feng J, Godemann R (2017) Structure-based design of tricyclic NF-κB inducing kinase (NIK) inhibitors that have high selectivity over phosphoinositide-3-kinase (PI3K). J Med Chem 60(2):627–640PubMedGoogle Scholar