Structural Chemistry

, Volume 29, Issue 6, pp 1745–1751 | Cite as

The effect of curvature of Li-doped polycyclic hydrocarbon on its interaction energy with H2 and H2O: DF-SAPT (DFT) calculation

  • Mahdiyeh Bamdad
  • Hossein FarrokhpourEmail author
  • Bijan Najafi
  • Mahmud Ashrafizaadeh
Original Research


In this work, the interaction of three Li+-doped polycyclic hydrocarbons (Li+-DPH) with H2 and H2O was calculated to investigate the effect of curvature of substrate on the interaction energy (Eint). For this purpose, the Eint and its decomposed energy components (electrostatic (Eelec), exchange (Eexch), induction (Eind), and dispersion energy (Edisp)) were calculated using DF-SAPT (DFT) methodology for the selected systems (Li+-(3,3) carbon nanotube (Li+-CNT33), Li+-(6,6) carbon nanotube (Li+-CNT66), and Li+-graphene). According to the results, Eint does not change significantly with curvature for the interaction between both H2 and H2O gases and the selected Li+-DPH. Since the variation of the Eint with the curvature of Li+-DPH is not significant, the selection of a planar Li+-DPH is a trustworthy model to develop a general force field for describing the interaction between a Li+-DPH and adsorbed gases. The results reveal that, in the case of the H2, the components Eelect, Eexch, Eind, and Edisp have shown a decreasing trend with Li+-DPH’s curvature decrement. However, for the H2O, Eelect, Eexch, and Eind decrease from the Li+-CNT33 to the Li+-CNT66 while they increase from the Li+-CNT66 to the Li+-graphene. In this case, the Edisp increases with a decrease of the curvature of Li+-DPH. Finally, it can be seen that although the variation of the Eint with the curvature of Li+-DPH is not significant, the variation trend of the interaction energy components and the amount of variation depend on the gas molecule and in some cases are not negligible.


Curvature CNT DF-SAPT (DFT) Cation-doped polycyclic hydrocarbons 



The authors gratefully acknowledge the Sheikh Bahaei National High Performance Computing Center (SBNHPCC) for providing computing facilities and time.

Funding information

SBNHPCC is supported by the Scientific and Technological Department of Presidential Office and Isfahan University of Technology (IUT).


  1. 1.
    Chen P, Wu X, Lin J, Tan KL (1999). Science 285:91–93CrossRefGoogle Scholar
  2. 2.
    Yang RT (2000). Carbon 38:623–641CrossRefGoogle Scholar
  3. 3.
    Cabria I, López MJ, Alons JA (2005). J Chem Phys 123:204721CrossRefGoogle Scholar
  4. 4.
    Mpourmpakis G, Tylianakis E, Papanikolaou D, Froudakis G (2006). Rev Adv Mater Sci 11:92–97Google Scholar
  5. 5.
    Mirabella S, Celino M, Zollo G (2013). J Nanopart Res 15:2071CrossRefGoogle Scholar
  6. 6.
    W. Q. Deng, X. Xu, and, W. A. Goddard (2004) Phys Rev Lett, 92, 166103Google Scholar
  7. 7.
    Bamdad M, Farrokhpour H, Ashrafizaadeh M, Najafi B (2016). Mol Phys 114:3375–3387CrossRefGoogle Scholar
  8. 8.
    Bamdad M, Farrokhpour H, Ashrafizaadeh M, Najafi B (2018). TCA 137:43Google Scholar
  9. 9.
    Emampour JS, Gangi MD, Mahmoudi S, Taghavi MM, Shokry M (2009). IranJOC 4:256–260Google Scholar
  10. 10.
    Klauda JB, Jiang J, Sandler SI (2004). J Phys Chem B 108:9842–9851CrossRefGoogle Scholar
  11. 11.
    Sha H, Faller R (2016). Phys Chem Chem Phys 18:19944–19949CrossRefGoogle Scholar
  12. 12.
    Patkowski K, Szalewicz K (2006). J Chem Phys 125:154107CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Ernzerhof M, Burke K (1996). J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  15. 15.
    Gruning M, Gritsenko OV, van Gisbergen SJA, Baerends n EJ (2001). J Chem Phys 114:652CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Bukowski R, Cencek W, Jankowski P, Jeziorski B, Jeziorska M, Korona T, Kucharski SA, Lotrich VF, Metz MP, Misquitta AJ, Moszynski R, Patkowski K, Podeszwa R, Rob F, Rybak S, Szalewicz K, Williams HL, Wheatley RJ, Wormer PES, and Żuchowski PS. See also: Jeziorski B, Moszynski R, and Szalewicz K (1994) Chem. Rev, 94, 1887–1930Google Scholar
  18. 18.
    Podeszwa R, Bukowski R, Szalewicz K (2006). J Chem Theory Comput 2:400CrossRefGoogle Scholar
  19. 19.
    Schmidt MW et al (1993). J Comput Chem 14:1347CrossRefGoogle Scholar
  20. 20.
    Neese F, WIREs Comput (2012). Mol Sci 2:73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mahdiyeh Bamdad
    • 1
  • Hossein Farrokhpour
    • 1
    Email author
  • Bijan Najafi
    • 1
  • Mahmud Ashrafizaadeh
    • 2
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations