Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solution equilibria of aromatic dinitroso compounds: a combined NMR and DFT study

  • 132 Accesses

  • 1 Citations


Solution-state nitroso monomer-azodioxide equilibria and conformational freedom of several aromatic dinitroso derivatives, differing in the spacer group between the aromatic rings, were studied by one- and two-dimensional variable temperature 1H NMR spectroscopy and by quantum chemical calculations. The proton signals of nitroso monomer-azodioxide mixtures revealed by low-temperature NMR were assigned and validated using B3LYP-D3/6-311+G(2d,p)/SMD level of theory. In almost all cases, a preference towards the formation of only one azodioxy isomer of aromatic dinitroso compounds was found, which was assigned to Z-dimer according to computational data. Nevertheless, the computed small energy difference between the Z- and E-isomer could not account for the extreme preference for Z-dimer formation, indicating an influence of entropic or solvent effects. The formation of shorter oligomers in solution was excluded based on integrated 1H NMR signal intensities. The experimental results indicated an average dimerization Gibbs energy of about − 5 kJ/mol at 223 K and were found to be in very good correlation with dimerization energies obtained by solution-phase optimization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Vančik H (2013) Aromatic C-nitroso compounds. Springer, Heidelberg

  2. 2.

    Beaudoin D, Wuest JD (2016). Chem Rev 116:258–286

  3. 3.

    Fletcher DA, Gowenlock BG, Orrell KG (1997). J Chem Soc Perkin Trans 2:2201–2205

  4. 4.

    Fletcher DA, Gowenlock BG, Orrell KG (1998). J Chem Soc Perkin Trans 2:797–803

  5. 5.

    Orrell KG, Stephenson D (1989). Magn Reson Chem 27:368–376

  6. 6.

    Halasz I, Biljan I, Novak P, Meštrović E, Plavec J, Mali G, Smrečki V, Vančik H (2009). J Mol Struct 918:19–25

  7. 7.

    Biljan I, Cvjetojević G, Smrečki V, Novak P, Mali G, Plavec J, Babić D, Mihalić Z, Vančik H (2010). J Mol Struct 979:22–26

  8. 8.

    Gowenlock BG, Maidment MJ, Orrell KG, Šik V, Mele G, Vasapollo G, Hursthouse MB, Abdul Malik KM (2000). J Chem Soc Perkin Trans 2:2280–2286

  9. 9.

    Azoulay M, Stymne B, Wettermark G (1976). Tetrahedron 32:2961–2966

  10. 10.

    Azoulay M, Fischer E (1982). J Chem Soc Perkin Trans 2:637–642

  11. 11.

    Orrell KG, Šik V, Stephenson D (1987). Magn Reson Chem 25:1007–1011

  12. 12.

    Orrell KG, Stephenson D, Verlaque JH (1990). J Chem Soc Perkin Trans 2:1297–1303

  13. 13.

    Fletcher DA, Gowenlock BG, Orrell KG, Šik V (1995). Magn Reson Chem 33:561–569

  14. 14.

    Bibulić P, Rončević I, Varga K, Mihalić Z, Vančik H (2016). J Mol Struct 1104:85–90

  15. 15.

    Bibulić P, Rončević I, Bermanec V, Vančik H (2017). Croat Chem Acta 90:383–389

  16. 16.

    Hacker NP (1993). Macromolecules 26:5937–5942

  17. 17.

    Rathore R, Kim JS, Kochi JK (1994). J Chem Soc Perkin Trans 1:2675–2684

  18. 18.

    Beaudoin D, Maris T, Wuest JD (2013). Nat Chem 5:830–834

  19. 19.

    Gowenlock BG, Richter-Addo GB (2005). Chem Soc Rev 34:797–809

  20. 20.

    TopSpin 21, Bruker Corporation, Rheinstetten (2007)

  21. 21.

    Varga K, Biljan I, Tomišić V, Mihalić Z, Vančik H (2018). J Phys Chem A 122:2542–2549

  22. 22.

    Siskos MG, Kontogianni VG, Tsiafoulis CG, Tzakos AG, Gerothanassis IP (2013). Org Biomol Chem 11:7400–7411

  23. 23.

    Marenich VA, Cramer JC, Truhlar GD (2009). J Phys Chem B 113:6378–6396

  24. 24.

    Marenich VA, Cramer JC, Truhlar GD (2009). J Phys Chem B 113:4538–4543

  25. 25.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A02. Gaussian Inc., Wallingford

  26. 26.

    Keith TA (2017) AIMAll (Version 17.01.25). TK Gristmill Software, Overland Park KS (

  27. 27.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

  28. 28.

    Koch U, Popelier PLA (1995). J Phys Chem 99:9747–9754

Download references


This work was supported by the Croatian Science Foundation (grant no. 7444, project ORGMOL).

Author information

Correspondence to Hrvoj Vančik or Ivana Biljan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary materials

Optimized geometries of all compounds are supplied in .xyz format. 1H NMR, COSY and IR spectra of compounds are also provided. (DOCX 918 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rončević, I., Bibulić, P., Vančik, H. et al. Solution equilibria of aromatic dinitroso compounds: a combined NMR and DFT study. Struct Chem 29, 1489–1497 (2018).

Download citation


  • Equilibrium
  • Solution
  • Aromatic dinitroso compounds
  • Dimerization
  • NMR
  • DFT