Advertisement

Structural Chemistry

, Volume 29, Issue 5, pp 1273–1285 | Cite as

Ab initio investigation of the lower-energy candidate structures for (H2O)10+ water cluster

  • Wen-Qi Chen
  • Min Fu
  • Hai-Yan Wang
  • Zhao-Yi ZengEmail author
  • Bai-Ru YuEmail author
Original Research

Abstract

Low-lying structures of water cationic clusters and the compounds with the OH radical have become a hot topic in recent years. We here investigate the cluster \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) and calculate its ideal structures by the quantum chemical calculation together with the particle swarm optimization method. We analyzed the properties of the obtained lower-energy isomers of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \). Their energies are further re-optimized and demonstrated at three different methods with two basis sets. Based on our numerical calculations, a new cage-like structure of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) with the lowest energy is obtained at MP2/aug-cc-pVDZ level. Our results showed the comparison of energy order at different conditions and demonstrated the influence of temperature on the relative Gibbs energy and IR spectra. Moreover, we also contained the molecule orbitals to discuss the stability of these representative isomers.

Keywords

Isomers of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) MP2 Temperature effect Topological analysis 

Notes

Acknowledgements

The authors would like to thank the supports by the NSAF (Grant No. U1430117) and National Natural Science Foundation of China (Grant No. 11404099). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University. Some calculations are performed on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Compliance with ethical standards

This paper has not been published in whole or in part elsewhere. The manuscript is not currently being considered for publication in another journal. All authors have been personally and actively involved in substantive work leading to the manuscript and will hold themselves jointly and individually responsible for its content.

Conflict to interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Alizadeh E, Sanche L (2012) Precursors of solvated electrons in radiobiological physics and chemistry. Chem Rev 112(11):5578–5602CrossRefGoogle Scholar
  2. 2.
    Wang D, Li R, Zhu J, Shi JY, Han JF, Zong X, Li C (2012) Potocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–5089CrossRefGoogle Scholar
  3. 3.
    Yourey JE, Kurtz JB, Bartlett BM (2012) Water oxidation on a CuWO4-WO3 composite electrode in the presence of [Fe(CN)6]3−: toward solar Z-scheme water splitting at zero bias. J Phys Chem C 116(3):3200–3205CrossRefGoogle Scholar
  4. 4.
    Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3):335–340CrossRefGoogle Scholar
  5. 5.
    Wang CR, Nguyen J, Lu QB (2009) Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J Am Chem Soc 131(32):11320–11322CrossRefGoogle Scholar
  6. 6.
    Yun Z, Sweasy JB (2009) Biomolecular action of ionizing radiation. Radiat Res 171(3):387–387CrossRefGoogle Scholar
  7. 7.
    Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New YorkGoogle Scholar
  8. 8.
    Garrett BC, Dixon DA, Camaioni DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara DR, Bartels DM, Becker KH, Bowen KH, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang LS, Wittig C, Zwier TS (2005) Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem Rev 105(1):355–390CrossRefGoogle Scholar
  9. 9.
    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998) Radiation yield of oxygen-based radicals in hyperquenched glassy water gamma-irradiated at 77 K. Radiat Phys Chem 53(6):635–638CrossRefGoogle Scholar
  10. 10.
    Plonka A, Szajdzinskapietek E, Bednarek J, Hallbrucker A, Mayer E (2000) Unexpected radical generation on γ-irradiating metastable forms of water at 77 K. Phys Chem Chem Phys 2(8):1587–1593CrossRefGoogle Scholar
  11. 11.
    Visser SPD, Koning LJD, Nibbering NMM (1995) Reactivity and thermochemical properties of the water dimer radical cation in the gas phase. J Phys Chem 99(42):15444–15447CrossRefGoogle Scholar
  12. 12.
    Jongma RT, Huang YH, Shi SM, Wodtke AM (1998) Rapid evaporative cooling suppresses fragmentation in mass spectrometry: synthesis of ‘unprotonated’ water cluster ions. J Phys Chem A 102(45):8847–8854CrossRefGoogle Scholar
  13. 13.
    Kumar A, Kołaski M, Lee HM, Kim KS (2008) Photoexcitation and photoionization dynamics of water photolysis. J Phys Chem A 112(24):5502–5508CrossRefGoogle Scholar
  14. 14.
    Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaeffer III HF (2009) Water dimer radical cation: structures, vibrational frequencies, and energetics. J Phys Chem A 113(49):13779–13789CrossRefGoogle Scholar
  15. 15.
    Periyasamy G, Collin JP, Sauvage JP, Levine RD, Remacle F (2009) Electrochemically driven sequential machines: an implementation on copper rotaxanes. Chem Eur J 15(6):1310–1313CrossRefGoogle Scholar
  16. 16.
    Tachikawa H, Takada T (2016) Ionization dynamics of small water clusters: proton transfer rate. Chem Phys 475:9–13CrossRefGoogle Scholar
  17. 17.
    Kaledin M, Wood CA (2010) Ab initio studies of structural and vibrational properties of protonated water cluster H7O3 + and its deuterium isotopologues: an application of driven molecular dynamics. J Chem Theory Comput 6(8):2525–2535CrossRefGoogle Scholar
  18. 18.
    Partanen L, Hӓnninen V, Halonen L (2016) Effects of global and local anharmonicities on the thermodynamic properties of sulfuric acid monohydrate. J Chem Theory Comput 12(11):5511–5524CrossRefGoogle Scholar
  19. 19.
    Tachikawa H, Takada T (2015) Proton transfer rates in ionized water clusters (H2O)n (n = 2–4). RSC Adv 5(9):6945–6853CrossRefGoogle Scholar
  20. 20.
    Floris SD, Talbot JJ, Wilkinson MJ, Herr JD, Steele RP (2016) Quantum molecular motion in the mixed ion-radical complex, [(H2O)(H2S)]+. Phys Chem Chem Phys 18(39):27450–27459CrossRefGoogle Scholar
  21. 21.
    Shin JW, Hammer NI, Diken EG, Johnson MA, Walter RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004) Infrared signature of structures associated with the H+(H2O)n (n = 6 to 27) clusters. Science 304(5674):1137–1140CrossRefGoogle Scholar
  22. 22.
    James T, Wales DJ, Hernández-Rojas J (2005) Global minima for water clusters (H2O)n, n ≤ 21, described by a five-site empirical potential. Chem Phys Lett 415(4):302–307CrossRefGoogle Scholar
  23. 23.
    Li FY, Liu Y, Wang L, Zhao JJ, Chen ZF (2012) Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Theor Chem Accounts 131(3):1–7CrossRefGoogle Scholar
  24. 24.
    Xantheas SS (2000) Cooperativity and hydrogen bonding network in water clusters. Chem Phys 258(2):225–231CrossRefGoogle Scholar
  25. 25.
    Hammond JR, Govind N, Kowalski K, Autschbach J, Xantheas SS (2009) Accurate dipole polarizabilities for water clusters n = 2–12 at the coupled-cluster level of theory and benchmarking of various density functionals. J Chem Phys 131(21):9080–9089CrossRefGoogle Scholar
  26. 26.
    Kang DD, Dai JY, Hou Y, Yuan JM (2010) Structure and vibrational spectra of small water clusters from first principles simulations. J Chem Phys 133(1):014302CrossRefGoogle Scholar
  27. 27.
    Segarra-martí J, Merchán M, Roca-sanjuán D (2012) Ab initio determination of the ionization potentials of water clusters (H2O)n (n = 2−6). J Chem Phys 136(24):244306CrossRefGoogle Scholar
  28. 28.
    Dopfer O (2000) Microsolvation of the water cation in argon: I. Ab initio and density functional calculations of H2O+−Arn (n = 0–4). J Phys Chem A 104(50):11693–11701CrossRefGoogle Scholar
  29. 29.
    Dopfer O, Roth D, Maier JP (2000) Microsolvation of the water cation in argon: II. Infrared photodissociation spectra of H2O+−Arn (n = 1−14). J Phys Chem A 104(50):11702–11713CrossRefGoogle Scholar
  30. 30.
    Roth D, Dopfer O, Maier JP (2001) Intermolecular potential energy surface of the proton-bound H2O+–He dimer: ab initio calculations and IR spectra of the O–H stretch vibrations. Phys Chem Chem Phys 3(12):2400–2410CrossRefGoogle Scholar
  31. 31.
    Eroms M, Jungen M, Meyer HD (2010) Nonadiabatic nuclear dynamics after valence ionization of H2O. J Phys Chem A 114(36):9893–9910CrossRefGoogle Scholar
  32. 32.
    Ghanty TK, Ghosh SK (2002) Hardness and polarizability profiles for intramolecular proton transfer in water dimer radical cation. J Phys Chem A 106(16):4200–4204CrossRefGoogle Scholar
  33. 33.
    Gurtubay IG, Drummond ND, Towler MD, Needs RJ (2006) Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers. J Chem Phys 124(2):4931–4937CrossRefGoogle Scholar
  34. 34.
    Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) Electronic structure of the water dimer cation. J Phys Chem A 112(27):6159–6170CrossRefGoogle Scholar
  35. 35.
    Gardenier GH, Johnson MA, McCoy AB (2009) Spectroscopic study of the ion-radical H-bond in H4O2 +. J Phys Chem A 113(16):4772–4779CrossRefGoogle Scholar
  36. 36.
    Talbot JJ, Cheng XL, Herr JD, Steele RP (2016) Vibrational signatures of electronic properties in oxidized water: unraveling the anomalous spectrum of the water dimer cation. J Am Chem Soc 138(36):11936–11945CrossRefGoogle Scholar
  37. 37.
    Lee HM, Kumar A, Kołaski M, Kim DY, Lee EC, Min SK, Park M, Choi YC, Kim KS (2010) Comparison of cationic, anionic and neutral hydrogen bonded dimers. Phys Chem Chem Phys 12(23):6278–6287CrossRefGoogle Scholar
  38. 38.
    Sodupe M, Bertran J, Rodríguez-Santiago L, Baerends EJ (1999) Ground state of the (H2O)2 + radical cation: DFT versus post-Hartree−Fock methods. J Phys Chem A 103(1):166–170CrossRefGoogle Scholar
  39. 39.
    Shinohara H, Nishi N, Washida N, Washida N (1986) Photoionization of water clusters at 11.83 eV: observation of unprotonated cluster ions (H2O)n + (2 ≤ n ≤ 10). J Chem Phys 84(10):5561–5567CrossRefGoogle Scholar
  40. 40.
    Shiromaru H, Achiba Y, Kimura K, Lee YT (1987) Determinatlon of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation. J Phys Chem 91(1):17–19CrossRefGoogle Scholar
  41. 41.
    Shiromaru H, Suzuki H, Hiroyasu S, Nagaoka S, Kimura K (1989) Synchrotron radiation study on small binary molecular clusters. Ar-water and CO2-water systems. J Phys Chem 93(5):1832–1835CrossRefGoogle Scholar
  42. 42.
    Mizuse K, Mikami N, Fujii A (2010) Infrared spectra and hydrogen-bonded network structures of large protonated water clusters H+(H2O)n (n = 20–200). Angew Chem 122(52):10317–10320CrossRefGoogle Scholar
  43. 43.
    Mizuse K, Fujii A (2011) Infrared photodissociation spectroscopy of H+(H2O)6·Mm (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O+ and H5O2 + core isomers. Phys Chem Chem Phys 13(15):7129–7135CrossRefGoogle Scholar
  44. 44.
    Mizuse K, Fujii A (2013) Infrared spectroscopy of large protonated water clusters H+(H2O)20–50 cooled by inert gas attachment. Chem Phys 419(419):2–7CrossRefGoogle Scholar
  45. 45.
    Mizuse K, Fujii A (2013) Characterization of a solvent-separated ion-radical pair in cationized water networks: infrared photodissociation and Ar-attachment experiments for water cluster radical cations (H2O)n + (n = 3–8). J Phys Chem A 117(5):929–938CrossRefGoogle Scholar
  46. 46.
    Mizuse K, Kuob JL, Fujii A (2011) Structural trends of ionized water networks: infrared spectroscopy of water cluster radical cations (H2O)n + (n = 3–11). Chem Sci 2(5):868–876CrossRefGoogle Scholar
  47. 47.
    Herr JD, Steele RP (2016) Ion-radical pair separation in larger oxidized water clusters, (H2O)+ n = 6–21. J Phys Chem A 120(36):7225–7239CrossRefGoogle Scholar
  48. 48.
    Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101(28):5111–5116CrossRefGoogle Scholar
  49. 49.
    Wang YC, Lv J, Zhu L, Ma YM (2010) Crystal structure prediction via particle swarm optimization. Physics 82(9):7174–7182Google Scholar
  50. 50.
    Becke AD (1998) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford CTGoogle Scholar
  52. 52.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618–622CrossRefGoogle Scholar
  53. 53.
    Sholl DS, Steckel JA (2009) Density functional theory/a practical introduction. Wiley, New YorkCrossRefGoogle Scholar
  54. 54.
    Lee HM, Kim KS (2011) Water trimer cation. Theor Chem Accounts 130(2–3):543–548CrossRefGoogle Scholar
  55. 55.
    Lu EP, Pan PR, Li YC, Tsai MK, Kuo JL (2014) Structural evolution and solvation of the OH radical in ionized water radical cations (H2O)n +, n = 5–8. Phys Chem Chem Phys 16(35):18888–18895CrossRefGoogle Scholar
  56. 56.
    Lv ZL, Cheng Y, Chen XR, Cai LC (2015) Structural exploration and properties of (H2O)4 + cluster via ab initio in combination with particle swarm optimization method. Chem Phys 452(2):25–30CrossRefGoogle Scholar
  57. 57.
    Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014) Ab initio molecular dynamics investigation of the lower energy candidate structures for (H2O)5 + water cluster. J Chem Phys 141(5):432–439CrossRefGoogle Scholar
  58. 58.
    Do H, Besley NA (2013) Structure and bonding in ionized water clusters. J Phys Chem A 117(25):5385–5391CrossRefGoogle Scholar
  59. 59.
    Lee HM, Kim KS (2009) Water dimer cation: density functional theory vs ab initio theory. J Chem Theory Comput 5(4):976–981CrossRefGoogle Scholar
  60. 60.
    Kim H, Lee HM (2009) Ammonia-water cation and ammonia dimer cation. J Phys Chem A 113(25):6859–6864CrossRefGoogle Scholar
  61. 61.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  62. 62.
    Pan PR, Lin YS, Tsai MK, Kuo JL, Chai JD (2012) Assessment of density functional approximations for the hemibonded structure of the water dimer radical cation. Phys Chem Chem Phys 14(30):10705–10712CrossRefGoogle Scholar
  63. 63.
    Tsai MK, Kuo JL, Lu JM (2012) The dynamics and spectroscopic fingerprint of hydroxyl radical generation through water dimer ionization: ab initio molecular dynamic simulation study. Phys Chem Chem Phys 14(38):13402–13408CrossRefGoogle Scholar
  64. 64.
    Do H, Besley NA (2013) Proton transfer or hemibonding? The structure and stability of radical cation clusters. Phys Chem Chem Phys 15(38):16214–16219CrossRefGoogle Scholar
  65. 65.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104(21):4811–4815CrossRefGoogle Scholar
  66. 66.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108(2):664–675CrossRefGoogle Scholar
  67. 67.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377CrossRefGoogle Scholar
  68. 68.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789CrossRefGoogle Scholar
  69. 69.
    Lee HM, Kim KS (2013) Dynamics and structural changes of small water clusters on ionization. J Comput Chem 34(18):1589–1597CrossRefGoogle Scholar
  70. 70.
    Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016) Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)6 +. J Chem Phys 145(15):154307CrossRefGoogle Scholar
  71. 71.
    Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J Phys Chem A 109(12):2937–2941CrossRefGoogle Scholar
  72. 72.
    Johnson ER, Keinan S, Mori-Sánchez P, Conteras-García J, Cohen AJ, Yang W (2010) NCI: Revealing non-covalent interactions. J Am Chem Soc 132(18):6498–6506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular Physics, College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  3. 3.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina

Personalised recommendations