Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Trends in bond dissociation energies of brominated flame retardants from density functional theory

  • 177 Accesses

  • 3 Citations

Abstract

Bond dissociation enthalpies (BDEs) are computed using the Density Functional Theory (DFT) for a selected set of C–Br, C–O, and C–Br bonds susceptible to homolysis in the thermal degradation of four brominated flame retardants (BFRs): decabromo-diphenyl, decabromo-diphenylethane, 1,2-bis(2,4,6-tribromophenoxy)-ethane, and 3,4,5,6-tetrabromo-1,2-diethyl-phtalate. Based on BDEs computed at M06/cc-pVTZ level, choice based on a previous benchmark, we find debromination as the dominant decomposition pathway of brominated diphenyls and brominated phtalates, whereas scission to form brominated phenoxyls and benzyl radicals is preferred in aromatic BFRs containing ether and alkyl bridges, respectively. Trends in computed BDEs are rationalized in terms of (de)localization of spin density in the electronic structure of the resulting radicals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Rudel RA, Perovich LJ (2009) Endocrine disrupting chemicals in indoor and outdoor air. Atmos Environ 43:170–181. https://doi.org/10.1016/j.atmosenv.2008.09.025

  2. 2.

    Harrad S, de Wit CA, Abdallah MA-E et al (2010) Indoor contamination with Hexabromocyclododecanes, Polybrominated diphenyl ethers, and Perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Technol 44:3221–3231. https://doi.org/10.1021/es903476t

  3. 3.

    Covaci A, Harrad S, Abdallah MA-E et al (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37:532–556. https://doi.org/10.1016/j.envint.2010.11.007

  4. 4.

    Van den Eede N, Dirtu AC, Ali N et al (2012) Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust. Talanta 89:292–300. https://doi.org/10.1016/j.talanta.2011.12.031

  5. 5.

    Dirtu AC, Covaci A, Dirtu AC, Abdallah M (2013) Advances in the sample preparation of brominated flame retardants and other brominated compounds. TrAC Trends Anal Chem 43:189–203. https://doi.org/10.1016/j.trac.2012.10.004

  6. 6.

    Dirtu AC, Ravindra K, Roosens L et al (2008) Fast analysis of decabrominated diphenyl ether using low-pressure gas chromatography–electron-capture negative ionization mass spectrometry. J Chromatogr A 1186:295–301. https://doi.org/10.1016/j.chroma.2007.07.034

  7. 7.

    Luo J, Hu J, Wei X et al (2015) Dehalogenation of persistent halogenated organic compounds: a review of computational studies and quantitative structure-property relationships. Chemosphere 131:17–33. https://doi.org/10.1016/j.chemosphere.2015.02.013

  8. 8.

    Wilkie CA, Morgan AB (2009) Fire retardancy of polymeric materials, 2nd edn. CRC Press: Taylor & Francis Group, Boca Raton, p 527

  9. 9.

    Shih YH, Wang CK (2009) Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations. J Hazard Mater 165:34–38. https://doi.org/10.1016/j.jhazmat.2008.09.103

  10. 10.

    Pan L, Bian W (2013) Theoretical study on the photodegradation mechanism of nona-BDEs in methanol. ChemPhysChem 14:1264–1271. https://doi.org/10.1002/cphc.201200952

  11. 11.

    Rotko G, Romańczyk PP, Kurek SS (2013) Reductive debromination of decabromodiphenyl ether yields brominated dibenzofurans in a Pschorr-type cyclisation. Electrochem Commun 37:64–67. https://doi.org/10.1016/j.elecom.2013.10.010

  12. 12.

    Yu K, Gu C, Boyd SA et al (2012) Rapid and extensive Debromination of Decabromodiphenyl ether by Smectite clay-templated subnanoscale zero-valent iron. Environ Sci Technol 46:8969–8975. https://doi.org/10.1021/es300516e

  13. 13.

    Zhuang Y, Ahn S, Seyfferth AL et al (2011) Dehalogenation of Polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale Zerovalent iron. Environ Sci Technol 45:4896–4903. https://doi.org/10.1021/es104312h

  14. 14.

    Balabanovich A, Luda M, Camino G, Hornung A (2003) Thermal decomposition behavior of 1,2-bis-(2,4,6-tribromophenoxy)ethane. J Anal Appl Pyrolysis 67:95–107. https://doi.org/10.1016/S0165-2370(02)00020-7

  15. 15.

    Striebich RC, Rubey WA, Tirey DA, Dellinger B (1991) High-temperature degradation of polybrominated flame retardant materials. Chemosphere 23:1197–1204. https://doi.org/10.1016/0045-6535(91)90144-3

  16. 16.

    Altarawneh M, Dlugogorski BZ (2014) Thermal decomposition of 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE), a novel brominated flame retardant. Environ Sci Technol 48:14335–14343. https://doi.org/10.1021/es5038047

  17. 17.

    Maftei D, Dumitras M, Isac D-L, Dirtu AC (2016) Density functional study of bond dissociation energies in highly brominated diphenyl ethers. Studia Universitatis Babes-Bolyai. Chemia 61:137–146

  18. 18.

    Gaussian 09, Revision C.01, Frisch MJ, Trucks G W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford, 2009

  19. 19.

    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

  20. 20.

    Li X, Xu X, You X, Truhlar DG (2016) Benchmark calculations for bond dissociation enthalpies of unsaturated methyl esters and the bond dissociation enthalpies of methyl Linolenate. J Phys Chem A. https://doi.org/10.1021/acs.jpca.6b02600

  21. 21.

    Ahubelem N, Altarawneh M, Dlugogorski BZ (2014) Dehydrohalogenation of ethyl halides. Tetrahedron Lett 55:4860–4868. https://doi.org/10.1016/j.tetlet.2014.07.009

  22. 22.

    Altarawneh M, Dlugogorski BZ (2015) Formation of dibenzofuran, dibenzo-p-dioxin and their hydroxylated derivatives from catechol. Phys Chem Chem Phys 17:1822–1830. https://doi.org/10.1039/C4CP04168B

  23. 23.

    Köppen R, Emmerling F, Becker R (2007) Decabromodiphenylethane. Acta Crystallogr Sect E Struct Rep Online 63:o585–o586. https://doi.org/10.1107/S1600536807000219

  24. 24.

    Yasuoka N, Ando T, Kuriyabashi S (1967) The crystal structure of 1,2-Diphenoxyethane. Bull Chem Soc Jpn 40:270–273. https://doi.org/10.1246/bcsj.40.270

  25. 25.

    Dunning TH (2000) A road map for the calculation of molecular binding energies. J Phys Chem A 104:9062–9080. https://doi.org/10.1021/jp001507z

  26. 26.

    McMillen DF, Golden DM (1982) Hydrocarbon bond dissociation energies. Annu Rev Phys Chem 33:493–532. https://doi.org/10.1146/annurev.pc.33.100182.002425

  27. 27.

    Kominar RJ, Krech MJ, Price SJW (1978) Pyrolysis of bromobenzene by the toluene carrier technique and determination of D (C 6 H 5 —Br). Can J Chem 56:1589–1592. https://doi.org/10.1139/v78-259

  28. 28.

    Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263. https://doi.org/10.1021/ar020230d

  29. 29.

    Altarawneh M, Dlugogorski BZ (2013) A mechanistic and kinetic study on the formation of PBDD/fs from PBDEs. Environ Sci Technol 47:5118–5127. https://doi.org/10.1021/es305081j

Download references

Acknowledgements

This research has been financed by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-1010.

Author information

Correspondence to Dan Maftei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maftei, D., Isac, D., Dumitraș, M. et al. Trends in bond dissociation energies of brominated flame retardants from density functional theory. Struct Chem 29, 921–927 (2018). https://doi.org/10.1007/s11224-018-1078-4

Download citation

Keywords

  • Brominated flame retardants
  • Bond dissociation energies
  • Density Functional Theory