Structural Chemistry

, Volume 29, Issue 4, pp 957–965 | Cite as

A molecular modeling study of combretastatin-like chalcones as anticancer agents using PLS, ANN and consensus models

  • Célio Fernando Lipinski
  • Aline Alves Oliveira
  • Kathia Maria Honorio
  • Patrícia Rufino Oliveira
  • Albérico Borges Ferreira da SilvaEmail author
Original Research


Combretastatin-like chalcones are promising anticancer compounds that inhibit the mitotic process through interactions with β-tubulin. A detailed study of these compounds can contribute for the rational drug design of new structures aiming at compounds with high biological activity. For this purpose, we have studied 87 combretastatin-like chalcones and proposed multivariate models based on partial least squares (PLS), artificial neural network consensus model (ANN-CM), and general consensus model (GCM). The proposed models have showed good predictive ability with r2test = 0.812 and MSE (test set) = 0.327 for the PLS model, r2test = 0.829 and MSE (test set) = 0.286 for the ANN-CM, and r2test = 0.822 and and MSE (test set) = 0.302 for the GCM. The selected molecular and electronic descriptors (RDF045e, RTv, RDF155u, RDF035m, SP02, PI, UNIP and EHOMO-3) represent molecular features of the compounds that can be associated to the biological activity and can be employed to help the design of new bioactive ligands with improved biological activity.


Cancer Microtubules Chalcones QSAR ANN Consensus modeling 



The authors would like to thank CNPq, CAPES and FAPESP (Brazilian agencies) for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_1072_MOESM1_ESM.pdf (360 kb)
ESM 1 (PDF 359 kb)


  1. 1.
    Wilson L, Jordan MA (2004) Microtubules as a target for anticancer drugs. Nature 4:252–265. CrossRefGoogle Scholar
  2. 2.
    Sharma R et al (2016) A review on mechanisms of anti tumor activity of chalcones. Anti Cancer Agents Med Chem 16:200–211. CrossRefGoogle Scholar
  3. 3.
    Kello M et al (2016) Chalcone derivatives cause accumulation of colon cancer cells in the G2/M phase and induce apoptosis. Life Sci 150:32–38. CrossRefPubMedGoogle Scholar
  4. 4.
    Bai R, Covell DG, Pei XF, Ewell JB, Nguyen NY, Brossi A, Hamel E (2000) Mapping the binding site of colchicinoids on beta-tubulin. 2-chloroaetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J Biol Chem 51:40443–40452CrossRefGoogle Scholar
  5. 5.
    Gupta S, Bhattacharyya B (2003) Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem 1-2:41–47. CrossRefGoogle Scholar
  6. 6.
    Rahman MA (2011) Chalcone: a valuable insight into the recent advances and potential pharmacological activities. Chem Sci J CSJ-21. doi:
  7. 7.
    Ou-Yang S et al (2012) Computacional drug discovery. Acta Pharmacol Sin 33:1131–1140. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Kendall DG (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45. doi:
  9. 9.
    Pettit GR, Singh SB, Boyd MR, Hamel E, Pettit RK, Schmidt JM, Hogan F (1995) Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5 and A-6. J Med Chem 38:1666–1672. CrossRefPubMedGoogle Scholar
  10. 10.
    Lin CM, Singh SB, Chu PS, Dempcy RO, Schmidt JM, Pettit GR, Hamel E (1988) Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study. Mol Pharmacol 34:200–208PubMedGoogle Scholar
  11. 11.
    Pettit GR, Singh SB, Schmidt JM (1988) Isolation, structure, synthesis and antimitotic properties of Combretastatins B-3 and B-4 form Combretum Caffrum. J Nat Prod 51:517–527. CrossRefPubMedGoogle Scholar
  12. 12.
    Pettit GR, Cragg GM, Herald DL, Schmidt JM, Lohavanuaya P (1982) Isolation and structure of combretastatin. Can J Chem 60.
  13. 13.
    Pettit GR, Singh SB (1987) Isolation, structure, and synthesis of combretastatin A-2, A-3 and B-2. Can J Chem 65:2390. CrossRefGoogle Scholar
  14. 14.
    Ducki S, Rennison D, Woo M, Kendall A, Chabert JFD, McGown AT, Lawrence N (2009) Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: synthesis and biological evaluation of antivascular activity. Bioorg Med Chem 17:7698–7710. CrossRefPubMedGoogle Scholar
  15. 15.
    González-Díaz H et al (2007) ANN-QSAR model for selection of anticancer leads from structurally heterogeneous series of compounds. Eur J Med Chem 42:580–585. CrossRefPubMedGoogle Scholar
  16. 16.
    Pasomub E et al (2010) The application of artificial neural networks for phenotypic drug resistance prediction: evaluation and comparison with other interpretation systems. Jpn J Infect Dis 63:87–94Google Scholar
  17. 17.
    Oliveira AA et al (2017) New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists. J Mol Model 23:302. CrossRefPubMedGoogle Scholar
  18. 18.
    Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701. CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  20. 20.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 37. doi:
  21. 21.
    Poople JA, Seeger R, Binkley JS, Krishnan R (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650. CrossRefGoogle Scholar
  22. 22.
    Tetko IV et al (2005) Virtual computational chemistry laboratory—design and description. J Comput Aid Mol Des 19:453–463. CrossRefGoogle Scholar
  23. 23.
    Oliveira DB, Gaudio AC (2001) BuildQSAR: a new computer program for QSAR analysis. Quantitative Structure-Activity Relationships 6:599–601. CrossRefGoogle Scholar
  24. 24.
    Infometrix INC. (2002) Pirouette 3.11. WoodinvilleGoogle Scholar
  25. 25.
    Martins JPA, Ferreira MMC (2013) QSAR modeling: um novo pacote computacional open source para gerar e validar modelos QSAR. Química Nova 36:554. CrossRefGoogle Scholar
  26. 26.
    Mathworks (2011). Matlab:7.12Google Scholar
  27. 27.
    Deeb O, Hemmateenejad B (2007) ANN-QSAR model of drug-binding to human serum albumin. Chem Biol Drug Des 70:19–29. CrossRefPubMedGoogle Scholar
  28. 28.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Molecular Informatics 29:476–488. CrossRefPubMedGoogle Scholar
  29. 29.
    Jagiello K, Grzonkowska M, Swirog M et al (2016) Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. J Nanopart Res 18:256. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jagiello K, Sosnowska A et al (2014) Direct QSPR: the most efficient way of predicting organic carbon/water partition coefficient (log KOC) for polyhalogenated POPs. Struct Chem 25:997–1004. CrossRefGoogle Scholar
  31. 31.
    Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787. CrossRefGoogle Scholar
  32. 32.
    Gerova MS et al (2016) Combretastatin A-4 analogues with benzoxazolone scaffold: synthesis, structure and biological activity. Eur J Med Chem 120:121–133. CrossRefPubMedGoogle Scholar
  33. 33.
    Guan Q et al (2014) Synthesis and biological evaluation of novel 3,4-diaryl-1,2,5-selenadiazol analogues of combretastatin A-4. Eur J Med Chem 87:1–9. CrossRefPubMedGoogle Scholar
  34. 34.
    Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. J Vibrational Spectroscopy 19:151–164. CrossRefGoogle Scholar
  35. 35.
    Abreu RMV, Ferreira ICFR, Queiroz MJRP (2009) QSAR model for predicting radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes. Eur J Med Chem 44:1952–1958. CrossRefPubMedGoogle Scholar
  36. 36.
    Randic M (1995) Molecular shape profiles. J Chem Inf Comput Sci 35:373–382. CrossRefGoogle Scholar
  37. 37.
    Randic M, Basak SC (1999) Optimal molecular descriptors based on weighted path numbers. J Chem Inf Comput Sci 39:261–266. CrossRefGoogle Scholar
  38. 38.
    Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692. CrossRefPubMedGoogle Scholar
  39. 39.
    Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705. CrossRefPubMedGoogle Scholar
  40. 40.
    Skorobogatov VA, Dobrynin AA (1988) Metric analysis of graphs. Match Commun Math Comp Chem 23:105–151Google Scholar
  41. 41.
    Hill NE (1953) Dielectric relaxation time of polar molecules in solution. Nature 4358:836–837. CrossRefGoogle Scholar
  42. 42.
    Mahal K et al (2016) Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl) indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors. Eur J Med Chem 118:9–20. CrossRefPubMedGoogle Scholar
  43. 43.
    Jung E et al (2016) Synthesis and biological activity of pyrole analogues of combretastatin A-4. Bioorg Med Chem Lett 26:3001–3005. CrossRefPubMedGoogle Scholar
  44. 44.
    Kamal A et al (2016) Synthesis and biological evaluation of arylcinnamide linked combretastatin-A4 hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg Med Chem Lett 26:2957–2964. CrossRefPubMedGoogle Scholar
  45. 45.
    Madadi N et al (2016) Dioxol and dihydrodioxin analogs of 2- and 3-phenylacetonitriles as potent anti-cancer agents with nanomolar activity against a variety of human cancer cells. Bioorg Med Chem Lett 26:2164–2169. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shobeiri N et al (2016) Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur J Med Chem 114:14–23. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Célio Fernando Lipinski
    • 1
  • Aline Alves Oliveira
    • 2
  • Kathia Maria Honorio
    • 2
  • Patrícia Rufino Oliveira
    • 2
  • Albérico Borges Ferreira da Silva
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil

Personalised recommendations