Advertisement

Structural Chemistry

, Volume 28, Issue 5, pp 1343–1357 | Cite as

Tautomerism in acyl-pyrazolones and in a novel photolysis product—importance and impact of the accurate localization of hydrogen atoms in crystal structures

  • Lorraine A. Malaspina
  • Allan H. White
  • Dieter Wege
  • Michael B. Tolmie
  • Brian W. Skelton
  • Simon GrabowskyEmail author
Original Research

Abstract

Acyl-pyrazolones exist in four different tautomeric forms (two keto and two enol) in crystal structures. Routine crystal structure refinements using an independent atom model and routine isolated-molecule calculations fail in locating the mobile hydrogen atoms accurately in 22 investigated acyl-pyrazolone examples. However, a combination of both within the framework of quantum crystallography represented by the method of Hirshfeld atom refinement accurately locates the mobile hydrogen atom in a resonance-assisted hydrogen bond of title compound 3, a novel photolysis product. The impact of the hydrogen atom position on the resonance system of the non-hydrogen framework of the various tautomers is discussed, and the importance of intermolecular interactions for the positioning of the hydrogen atom is highlighted.

Keywords

Tautomerism Resonance-assisted hydrogen bond Hirshfeld atom refinement Hydrogen atom parameters Photolysis 

Notes

Acknowledgements

We gratefully acknowledge useful consultations with Prof. C. Pettinari of the University of Camerino in respect of accessing/acquiring data on relevant compounds. S. Grabowsky thanks the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) for funding within the Emmy Noether scheme GR 4451/1-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_1005_MOESM1_ESM.cif (321 kb)
ESM 1 (CIF 320 kb)
11224_2017_1005_MOESM2_ESM.cif (16 kb)
ESM 2 (CIF 15 kb)
11224_2017_1005_MOESM3_ESM.fcf (94 kb)
ESM 3 (FCF 93 kb)
11224_2017_1005_MOESM4_ESM.cif (23 kb)
ESM 4 (CIF 23 kb)
11224_2017_1005_MOESM5_ESM.fcf (269 kb)
ESM 5 (FCF 269 kb)
11224_2017_1005_MOESM6_ESM.cif (31 kb)
ESM 6 (CIF 30 kb)
11224_2017_1005_MOESM7_ESM.fcf (216 kb)
ESM 7 (FCF 216 kb)
11224_2017_1005_MOESM8_ESM.cif (194 kb)
ESM 8 (CIF 194 kb)
11224_2017_1005_MOESM9_ESM.cif (20 kb)
ESM 9 (CIF 20 kb)
11224_2017_1005_MOESM10_ESM.fcf (164 kb)
ESM 10 (FCF 164 kb)
11224_2017_1005_MOESM11_ESM.cif (22 kb)
ESM 11 (CIF 21 kb)
11224_2017_1005_MOESM12_ESM.fcf (274 kb)
ESM 12 (FCF 273 kb)
11224_2017_1005_MOESM13_ESM.cif (26 kb)
ESM 13 (CIF 25 kb)
11224_2017_1005_MOESM14_ESM.fcf (269 kb)
ESM 14 (FCF 268 kb)
11224_2017_1005_MOESM15_ESM.pdf (917 kb)
ESM 15 (PDF 916 kb)

References

  1. 1.
    Antonov L (2013) Tautomerism: methods and theories. John Wiley & Sons, Google Scholar
  2. 2.
    Ädelroth P (2006) Special issue on proton transfer in biological systems Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757(8):867–870CrossRefGoogle Scholar
  3. 3.
    Geraldes C, Barros M, Maycock C, Silva M (1990) The preferential direction of enolization of some asymmetric 1, 3-dicarbonyl compounds in solution: a study by multinuclear NMR spectroscopy J Mol Struct 238:335–346CrossRefGoogle Scholar
  4. 4.
    Allen G, Dwek RA (1966) An nmr study of keto–enol tautomerism in β-diketones. Journal of the Chemical Society B, Physical Organic, pp. 161–163Google Scholar
  5. 5.
    Zheglova D, Denkov N, Kol'tsov A (1984) Influence of intramolecular hydrogen bonds on the tautomeric equilibrium of 1,3-diketones J Mol Struct 115:371–374CrossRefGoogle Scholar
  6. 6.
    Jones RD (1976) The crystal structure of the enol tautomer of 1,3-diphenyl-1,3-propanedione (dibenzoylmethane) by neutron diffraction Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 32(6):1807–1811Google Scholar
  7. 7.
    Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory J Mol Struct 552(1):1–15CrossRefGoogle Scholar
  8. 8.
    Cleland W (2000) Low-barrier hydrogen bonds and enzymatic catalysis Arch Biochem Biophys 382(1):1–5CrossRefGoogle Scholar
  9. 9.
    Cleland WW, Kreevoy MM (1994) Low-barrier hydrogen bonds and enzymic catalysis Science 264(5167):1887–1887CrossRefGoogle Scholar
  10. 10.
    Schiøtt B, Iversen BB, Madsen GKH, Larsen FK, Bruice TC (1998) On the electronic nature of low-barrier hydrogen bonds in enzymatic reactions Proc Natl Acad Sci 95(22):12799–12802CrossRefGoogle Scholar
  11. 11.
    CCDC (2014) ConQuest version 1.17- CSD version 5.36 (May 2015)Google Scholar
  12. 12.
    Akama Y, Shiro M, Ueda T, Kajitani M (1995) Keto and enol tautomers of 4-benzoyl-3-methyl-1-phenyl-5 (2H)-pyrazolone Acta Crystallogr Sect C: Cryst Struct Commun 51(7):1310–1314 (CCDC: YUYDOL ( enol ), DEBFAR02 ( keto )) CrossRefGoogle Scholar
  13. 13.
    Gloe K, Uzoukwu BA, Rademacher O (2000) 4-acetyl-5-methyl-2-phenyl-1, 2-dihydro-3H-pyrazol-3-one hydrate Acta Crystallogr Sect C: Cryst Struct Commun 56(12):e580–e581 (CCDC: XEGVEK) CrossRefGoogle Scholar
  14. 14.
    Holzer W, Mereiter K, Plagens B (1999) 4-acyl-5-methyl-2-phenylpyrazolones: NMR and X-ray structure investigations Heterocycles 2(50):799–818 (CCDC: CIQFEN ( enol ), CIQDUB ( enol ), CIQFAJ ( keto )) CrossRefGoogle Scholar
  15. 15.
    Guard JA, Steel PJ (1994) Heterocyclic tautomerism. VII. X-ray structures of two crystalline tautomers of 4-cinnamoyl-1, 3-dimethylpyrazol-5-one Aust J Chem 47(8):1453–1459 (CCDC: HESTUU ( enol ), HESTOO ( keto )) CrossRefGoogle Scholar
  16. 16.
    Kataeva ON, Gubaidullin AT, Litvinov IA, Lodochnikova OA, Islamov LR, Movchan AI, Chmutova GA (2002) The structure of 1-phenyl-3-benzoylamino-4-benzoylpyrazol-2-in-5-one J Mol Struct 610(1):175–179 (CCDC: MUGQIO) CrossRefGoogle Scholar
  17. 17.
    Cingolani A, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2004) A 4-acyl-5-pyrazolone ligand (HQ) in N-unidentate coordination mode in a Rh(CO)2Cl (HQ)-type complex Inorg Chem Commun 7(2):235–237 (CCDC: ASELEP) Google Scholar
  18. 18.
    Pettinari R, Pettinari C, Marchetti F, Skelton BW, White AH, Bonfili L, Cuccioloni M, Mozzicafreddo M, Cecarini V, Angeletti M (2014) Arene–ruthenium (II) acylpyrazolonato complexes: apoptosis-promoting effects on human cancer cells J Med Chem 57(11):4532–4542 (CCDC: ZOJZAB) CrossRefGoogle Scholar
  19. 19.
    Pettinari C, Marchetti F, Pettinari R, Natanti P, Drozdov A, Semenov S, Troyanov SI, Zolin V (2006) Syntheses, spectroscopic characterization and X-ray structural studies of lanthanide complexes with adamantyl substituted 4-acylpyrazol-5-one Inorg Chim Acta 359(12):4063–4070 (CCDC: MELNEX) CrossRefGoogle Scholar
  20. 20.
    Remya P, Suresh C, Reddy M (2007) Rapid reduction and complexation of vanadium by 1-phenyl-3-methyl-4-toluoyl-5-pyrazolone: spectroscopic characterization and structure modelling Polyhedron 26(17):5016–5022 (CCDC: VIMPAJ) CrossRefGoogle Scholar
  21. 21.
    Cingolani A, Effendy, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2002) First structurally characterized silver (I) derivatives with nonfluorinated β-Diketones Inorg Chem 41(5):1151–1161 (C2/c phase; CCDC: ADURIA) Google Scholar
  22. 22.
    Sheikh TU, Khan MA, Arshad MN, Khan IU, Stoeckli-Evans H (2009) 1-(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl) ethanone: a new monoclinic polymorph Acta Crystallogr Sect E: Struct Rep Online 65(2):o330–o330 (P21/n phase; CCDC: ADURIA01) CrossRefGoogle Scholar
  23. 23.
    Shi M, Li F, Yi T, Zhang D, Hu H, Huang C (2005) Tuning the triplet energy levels of pyrazolone ligands to match the 5D0 level of europium (III) Inorg Chem 44(24):8929–8936 (CCDC: RAXXUK) CrossRefGoogle Scholar
  24. 24.
    Begantsova YE, Bochkarev LN, Malysheva IP, Stolyarova NE, Kurskii YA, Lopatin MA, Baranov EV, Ilichev VA, Abakumov GA, Bochkarev MN (2011) Synthesis, photo-and electroluminescent properties of norbornene based platinum-containing copolymers Synth Met 161(11):1043–1050 (CCDC: ASUPUA) CrossRefGoogle Scholar
  25. 25.
    Uzoukwu AB, Al-Juaid SS, Hitchcock PB, Smith JD (1993) The synthesis and crystal structures of 1-phenyl-3-methyl-4-butanolypyrazol-5-one and of two pyrazolonato complexes of iron Polyhedron 12(22):2719–2724 (CCDC: LELDIP) CrossRefGoogle Scholar
  26. 26.
    O'Connell M, Ramsay C, Steel P (1985) Heterocyclic Tautomerism. II. 4-Acylpyrazolones. X-ray crystal structures of 4-benzoyl-5-methyl-2-phenylpyrazol-3 (2H)-one and 4-Acetoacetyl-3-methyl-1-phenylpyrazol-5-ol Aust J Chem 38(3):401–409 (CCDC: DEBFAR, DEBFEV) CrossRefGoogle Scholar
  27. 27.
    Marchetti F, Marinelli A, Pettinari C, Skelton BW, White AH (2011) Binuclear diorganotin (IV) complexes with bis (O, O′-4-acyl-5-pyrazolonato) bis (bidentate) ligands Inorg Chim Acta 366(1):388–393 (CCDC: ULUFOX) CrossRefGoogle Scholar
  28. 28.
    Deng G-M, Zhang H-M, Ou-Yang L-Q, Tong Q-Z, Li S (2012) [1-(4-Chlorophenyl)-5-hydroxy-3-phenyl-1H-pyrazol-4-yl](thiophen-2-yl) methanone Acta Crystallogr Sect E: Struct Rep Online 68(6):o1639–o1639 (CCDC: PAXWUI) CrossRefGoogle Scholar
  29. 29.
    Li J-Z, Zhang H-Q, Li H-X, Che P-Z, Wang T-C (2007) 1-(4-Chlorophenyl)-4-(2-furoyl)-3-(2-furyl)-1H-pyrazol-5-ol Acta Crystallogr Sect E: Struct Rep Online 63(3):o1289–o1290 (CCDC: DEYSIK) CrossRefGoogle Scholar
  30. 30.
    Elguero J (2011) Polymorphism and desmotropy in heterocyclic crystal structures Cryst Growth Des 11(11):4731–4738CrossRefGoogle Scholar
  31. 31.
    Desiraju GR (2008) Polymorphism: the same and not quite the same Crystal Growth Des 8(1):3–5CrossRefGoogle Scholar
  32. 32.
    Marchetti F, Pettinari C, Pettinari R (2005) Acylpyrazolone ligands: synthesis, structures, metal coordination chemistry and applications Coord Chem Rev 249(24):2909–2945CrossRefGoogle Scholar
  33. 33.
    Malaspina LA, Edwards AJ, Woinska M, Jayatilaka D, Turner MJ, Price JR, Herbst-Irmer R, Sugimoto K, Nishibori E, Grabowsky S (2017) Predicting the position of the hydrogen atom in the short intramolecular hydrogen bond of the hydrogen maleate anion from geometric correlations Cryst Growth Des 17:3812–3825Google Scholar
  34. 34.
    Hoser AA, Dominiak PM, Woźniak K (2009) Towards the best model for H atoms in experimental charge-density refinement Acta Crystallogr A: Found Crystallogr 65(4):300–311CrossRefGoogle Scholar
  35. 35.
    Allen FH, Bruno IJ (2010) Bond lengths in organic and metal-organic compounds revisited: X—H bond lengths from neutron diffraction data Acta Crystallogr Sect B: Struct Sci 66(3):380–386CrossRefGoogle Scholar
  36. 36.
    Lusi M, Barbour LJ (2011) Determining hydrogen atom positions for hydrogen bonded interactions: a distance-dependent neutron-normalized method Crystal Growth Des 11(12):5515–5521CrossRefGoogle Scholar
  37. 37.
    Deringer VL, Hoepfner V, Dronskowski R (2012) Accurate hydrogen positions in organic crystals: assessing a quantum-chemical aide Cryst Growth Des 12(2):1014–1021CrossRefGoogle Scholar
  38. 38.
    Dittrich B, Lübben J, Mebs S, Wagner A, Luger P, Flaig R (2017) Accurate bond lengths to hydrogen atoms from single-crystal X-ray diffraction by including estimated hydrogen ADPs and comparison to neutron and QM/MM benchmarks Chem Eur J 23:4605–4614CrossRefGoogle Scholar
  39. 39.
    Dittrich B, Hübschle C, Pröpper K, Dietrich F, Stolper T, Holstein J (2013) The generalized invariom database (GID) Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 69(2):91–104CrossRefGoogle Scholar
  40. 40.
    Jarzembska KN, Dominiak PM (2012) New version of the theoretical databank of transferable aspherical pseudoatoms, UBDB2011—towards nucleic acid modelling Acta Crystallogr A: Found Crystallogr 68(1):139–147CrossRefGoogle Scholar
  41. 41.
    Domagała S, Fournier B, Liebschner D, Guillot B, Jelsch C (2012) An improved experimental databank of transferable multipolar atom models–ELMAM2. Construction details and applications Acta Crystallogr A: Found Crystallogr 68(3):337–351CrossRefGoogle Scholar
  42. 42.
    Jayatilaka D, Dittrich B (2008) X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations Acta Crystallogr A: Found Crystallogr 64(3):383–393CrossRefGoogle Scholar
  43. 43.
    Capelli SC, Bürgi HB, Dittrich B, Grabowsky S, Jayatilaka D (2014) Hirshfeld atom refinement IUCrJ 1(5):361–379CrossRefGoogle Scholar
  44. 44.
    Woińska M, Grabowsky S, Dominiak PM, Woźniak K, Jayatilaka D (2016) Hydrogen atoms can be located accurately and precisely by x-ray crystallography Sci Adv 2(5):e1600192CrossRefGoogle Scholar
  45. 45.
    Woińska M, Jayatilaka D, Spackman MA, Edwards AJ, Dominiak PM, Wozniak K, Nishibori E, Sugimoto K, Grabowsky S (2014) Hirshfeld atom refinement for modelling strong hydrogen bonds Acta Crystallogr Section A: Found Adv 70(5):483–498CrossRefGoogle Scholar
  46. 46.
    Grabowsky S, Genoni A, Bürgi HB (2017) Quantum crystallography Chem Sci 8:4159–4176CrossRefGoogle Scholar
  47. 47.
    Massa L, Huang L, Karle J (1995) Quantum crystallography and the use of kernel projector matrices Int J Quantum Chem 56(S29):371–384CrossRefGoogle Scholar
  48. 48.
    Huang L, Massa L, Karle J (1999) Quantum crystallography applied to crystalline maleic anhydride Int J Quantum Chem 73(5):439–450CrossRefGoogle Scholar
  49. 49.
    Sheldrick GM (2008) A short history of SHELX Acta Crystallogr Section A 64(1):112–122CrossRefGoogle Scholar
  50. 50.
    Wege D (1998) In: Thummel RP (ed) Advances in theoretically interesting molecules, vol 4. JAI Press Inc., Stamford, Connecticut, and London, U.K.Google Scholar
  51. 51.
    Hixson SS, Mariano PS, Zimmerman HE (1973) Di-. pi.-methane and oxa-di-. pi.-methane rearrangements Chem Rev 73(5):531–551CrossRefGoogle Scholar
  52. 52.
    Karichiappan K, Wege D (2000) Naphtho[2,3-c]furan-4,9-dione and a further exploratory approach to the ring system of Ventilone A Aust J Chem 53(9):743–747Google Scholar
  53. 53.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities Theor Chim Acta 44(2):129–138CrossRefGoogle Scholar
  54. 54.
    Hirshfeld FL (1977) XVII. Spatial partitioning of charge density Israel J Chem 16(2–3):198–201CrossRefGoogle Scholar
  55. 55.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT, Google Scholar
  56. 56.
    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program J Comput Chem 34(16):1429–1437CrossRefGoogle Scholar
  57. 57.
    Koritsanszky T, Howard S, Macchi P, Gatti C, Farrugia L, Mallinson P, Volkov A, Su Z, Richter T, Hansen N (2003) XD (version 4.10, July), a computer program package for multipole refinement and analysis of electron densities from diffraction data. Free University of Berlin, Germany, Google Scholar
  58. 58.
    Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer (Version 3.1)Google Scholar
  59. 59.
    Miao Fangming LX, Yongqiang L (1991) Wuji Huaxue Xuebao Chinese J Inorg Chem 7(6):129–132 (CCDC: DEBFAR01) Google Scholar
  60. 60.
    Steiner T (2002) The hydrogen bond in the solid state Angew Chem Int Ed 41(1):48–76CrossRefGoogle Scholar
  61. 61.
    Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions Phys Chem Chem Phys 13(14):6670–6688CrossRefGoogle Scholar
  62. 62.
    Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal Chem Phys Lett 267(3–4):215–220CrossRefGoogle Scholar
  63. 63.
    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis Cryst Eng Comm 11(1):19–32CrossRefGoogle Scholar
  64. 64.
    McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces Chem Commun 37:3814–3816CrossRefGoogle Scholar
  65. 65.
    Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals Cryst Eng Comm 4(66):378–392CrossRefGoogle Scholar
  66. 66.
    Matta CF, Hernández-Trujillo J, Tang TH, Bader RFW (2003) Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals Chem Eur J 9:1940–1951CrossRefGoogle Scholar
  67. 67.
    Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts Chem Educ Res Pract 2(2):91–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017
Corrected publication August/2017

Authors and Affiliations

  1. 1.Universität Bremen, Fachbereich 2, Biologie/ChemieInstitut für Anorganische Chemie und KristallographieBremenGermany
  2. 2.The University of Western AustraliaSchool of Molecular SciencesPerthAustralia

Personalised recommendations