Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Asymmetric triiodide-diiodine interactions in the crystal of (Z)-4-chloro-5-((2-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)phenyl)amino)-1,2,3-dithiazol-1-ium oligoiodide

Abstract

The crystal structure and properties of (Z)-4-chloro-5-((2-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)phenyl)amino)-1,2,3-dithiazol-1-ium oligoiodide (C2/c) synthesized from the initial bis(4-сhloro-5H-1,2,3-dithiazolo-5-ylidene)benzene-1,2-diamine (P21/c) have been characterized by various experimental and theoretic methods. The superposition of atomic basin boundaries in the electron density and in the electrostatic potential does not confirm the halogen bonding between the triiodide anion and sulfur atoms in cation. On the other hand, in the studied oligoiodide, the charge-assisted iodine–iodine halogen bonds are observed between the strongly asymmetric triiodide and diiodine units; thus, the oligoiodide anion includes at least two diiodine fragments with bond lengths 2.7334(4) and 2.7786(5) Å bound. This key trait has resulted in characteristic spectral and thermal features. Raman spectra do not contain typical triiodide bands but only those that are expectable for bound diiodine at 157 and 179 cm−1. Thermal decomposition has demonstrated release of both diiodine molecules within one decomposition stage without melting.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Yu H, Yan L, He Y, Meng H, Huang W (2017) Chem Commun 53:432–435

  2. 2.

    Yin Z, Wang Q-X, Zeng M-H (2012) J Am Chem Soc 134:4857–4863

  3. 3.

    Svensson PH, Kloo L (2003) Chem Reviews 103(5):1649–1684

  4. 4.

    Desiraju GR, Ho PS, Kloo L (2013) Pure Appl Chem 85(8):1711–1713

  5. 5.

    Blake AJ, Devillanova FA, Gould RO, Li W-S, Lippolis V, Parsons S, Radek C, Schroder M (1998) Chem Soc Rev 27:195–205

  6. 6.

    Beno BR, Yeung K-S, Bartberger MD, Pennington LD, Meanwell NA (2015) J Med Chem 58(11):4383–4438

  7. 7.

    Shibaeva RP, Yagubskii EB (2004) Chem Rev 104:5347–5378

  8. 8.

    Rakitin OA (2011) Russ Chem Rev 80:647–659

  9. 9.

    Konstantinova LS, Rakitin OA (2008) Russ Chem Rev 77:521–546

  10. 10.

    Rawson JM, Alberola A, Whalley A (2006) J Mater Chem 16:2560–2575

  11. 11.

    Barclay TM, Cordes AW, Goddard JD, Mawhinney RC, Oakley RT, Preuss KE, Reed RW (1997) J Am Chem Soc 119:12136–12141

  12. 12.

    Barclay TM, Cordes AW, Oakley RT, Preuss KE, Reed RW (1998) Chem Commun:1039–1040

  13. 13.

    Barclay TM, Beer L, Cordes AW, Oakley RT, Preuss KE, Reed RW, Taylor NJ (2001) Inorg Chem 40:2709–2714

  14. 14.

    Wang Y-H, Lu Y-X, Zou J-W, Yu Q-S (2008) Int J Quantum Chem 108:90–99

  15. 15.

    Shi Q-C, Lu Y-X, Fan J-C, Zou J-W, Wang Y-H (2008) J Mol Struct 853:39–44

  16. 16.

    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

  17. 17.

    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

  18. 18.

    Groenewald F, Esterhuysen C, Dillen J (2012) Theor Chem Accounts 131:1–12

  19. 19.

    Bartashevich EV, Matveychuk YV, Troitskaya EA, Tsirelson VG (2014) Computational and Theoretical Chemistry 1037:53–62

  20. 20.

    Desiraju GR, Parthasarathy R (1989) J Am Chem Soc 111:8725–8726

  21. 21.

    Bartashevich EV, Shmanina EA, Yushina ID, Tsirelson VG, Kim DG (2014) J Struct Chem 55:154–160

  22. 22.

    Bartashevich EV, Batalov VI, Yushina ID, Stash AI, Chen YS (2016) Acta Crystallographica Section C 72:341–345

  23. 23.

    Konstantinova LS, Rakitin OA, Rees CW, Sivadasan S, Torroba T (1998) Tetrahedron 54:9639–9650

  24. 24.

    Sheldrick GM (2008) Acta Cryst A 64:112–122

  25. 25.

    The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

  26. 26.

    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noel Y, Causa M, Rerat M, Kirtman B (2014) Int J Quantum Chem 114:1287–1317

  27. 27.

    Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

  28. 28.

    Becke AD (1988) Phys Rev 38:3098–3100

  29. 29.

    Iodine Basis set. URL: http://www.tcm.phy.cam.ac.uk/~mdt26/basis_sets/I_basis.txt

  30. 30.

    Gatti C, Saunders VR, Roetti CJ (1994) J Chem Phys 101:10686–10696

  31. 31.

    Maschio L, Kirtman B, Rerat M, Orlando R, Dovesi R (2013) J Chem Phys 139:164101

  32. 32.

    Silvi B, Savin A (1994) Nature 371:683–686

  33. 33.

    Gatti C, Casassa S (2016) Topond14. User’s Manual. http://www.istm.cnr.it/csrsrc/sw_topond.html

  34. 34.

    I. Yusina – S. Casassa personal communication, 2017.

  35. 35.

    Granovsky AA Firefly version 8. http://classic.chem.msu.su/gran/firefly/index.html

  36. 36.

    Lu T, Chen F (2012) J Comput Chem 33:580–592

  37. 37.

    Hübschle CB, Dittrich B (2011) J Appl Crystallogr 44:238–257

  38. 38.

    Hübschle CB, Luger P (2006) J Appl Crystallogr 39:901–904

  39. 39.

    Bartashevich EV, Stash AI, Batalov VI, Yushina ID, Drebushchak TN, Boldyreva EV, Tsirelson VG (2016) Struct Chem 27:1553–1560

  40. 40.

    Aragoni MC, Arca M, Caltagirone C, Castellano C, Demartin F, Garau A, Isaia F, Lippolis V, Montisc R, Pintus A (2012) Cryst Eng Comm 14:5809–5823

  41. 41.

    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Cryst B72:171–179

  42. 42.

    Cameron TS, Decken A, Fang M, Parsons S, Passmore J, Wood DJ (1999) Chem Commun:1801–1802

  43. 43.

    Beer L, Cordes AW, Haddon RC, Itkis ME, Oakley RT, Reed RW, Robertson CM (2002) Chem Commun:1872–1873

  44. 44.

    Barclay TM, Beer L, Cordes AW, Oakley RT, Preuss KE, Taylor NJ, Reed RW (1999) Chem Commun:531–532

  45. 45.

    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York,

  46. 46.

    Abate A, Brischetto M, Cavallo G (2010) Chem Commun 46:2724

  47. 47.

    Nelyubina YV, Antipin MY, Dunin DS (2010) Chem Commun 46:5325–5327

  48. 48.

    Megen M, Reiss GJ (2013) Inorganics 1:3–13

  49. 49.

    Tebbe K-F, Loukili RZ (1998) Anorg Allg Chem 624:1175

  50. 50.

    Gaballa AS, Teleb SM, Rusanov E, Steinborn D (2004) Inorg Chim Acta 357:4144

  51. 51.

    Giese M, Albrecht M, Bohnen C, Repenko T, Valkonen A, Rissanen K (2014) Dalton Trans 43:1873

  52. 52.

    Batalov VI, Kim DG, Dikhtiarenko A, Amghouz Z, Bartashevich EV, Garcia-Granda S (2014) Z Kristallogr New Cryst Struct 229:211–212

  53. 53.

    Bartashevich EV, Yushina ID, Vershinina EA, Slepukhin PA, Kim DG (2014) J Struct Chem 55:112–119

  54. 54.

    Batsanov AS, Bryce MR, Chesney A, Howard JAK, John DE, Moore AJ, Wood CL, Gershtenman H, Becker JY, Khodorkovsky VY, Ellern A, Bernstein J, Perepichka IF, Rotello V, Gray M, Cuello AO (2001) J Mater Chem 11:2181

  55. 55.

    Murata T, Morita Y, Yakiyama Y, Fukui K, Yamochi H, Saito G, Nakasuji K (2007) J Am Chem Soc 129:10837

  56. 56.

    Warden AC, Warren M, Hearn MTW, Spiccia L (2004) New J Chem 28:1160

  57. 57.

    Bartashevich EV, Yushina ID, Stash AI, Tsirelson VG (2014) Cryst Growth Des 14:5674–5684

  58. 58.

    Mata I, Molins E, Alkorta I, Espinosa E (2007) J Phys Chem A 111:6425–6433

  59. 59.

    Shishkina AV, Stash AI, Civalleri B, Ellern A, Tsirelson VG (2010) Mendeleev Commun 20:161–164

  60. 60.

    Mata I, Alkorta I, Molins E, Espinosa E (2013) Chem Phys Lett 555:106–109

  61. 61.

    Bader RFW, Beddall P (1972) J Chem Phys 56:3320–3329

  62. 62.

    Tsirelson VG, Shishkina AV, Stash AI, Parsons S (2009) Acta Crystallogr B65:647–658

  63. 63.

    Deplano P, Ferraro JR, Mercuri ML, Trogu EF (1999) Coord Chem Rev 188:71–95

  64. 64.

    Arca M, Aragoni MC, Devillanova FA, Garau A, Isaia F, Lippolis V, Mancini A, Verani G (2006) Bioinorganic Chemistry and Applications Article ID 58937:1–12

  65. 65.

    Yushina I, Rudakov B, Krivtsov I, Bartashevich E (2014) J Therm Anal Calorim 118:425–429

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation, grant 4.1157.2017/PP and the Russian Foundation for Basic Research, grant No. 17-03-00406. O.I.B. and O.A.R. are grateful for the financial support from the Russian Science Foundation, grant No. 15-13-10022. The authors express their gratitude to Sylvia Casassa for the assistance in specifying computations with the use of TOPOND14.

Author information

Correspondence to E.V. Bartashevich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 537 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, O., Yushina, I., Bartashevich, E. et al. Asymmetric triiodide-diiodine interactions in the crystal of (Z)-4-chloro-5-((2-((4-chloro-5H-1,2,3-dithiazol-5-ylidene)amino)phenyl)amino)-1,2,3-dithiazol-1-ium oligoiodide. Struct Chem 28, 1927–1934 (2017). https://doi.org/10.1007/s11224-017-0987-y

Download citation

Keywords

  • Halogen bond
  • Asymmetric triiodide anion
  • Dithiazolium salts
  • Raman spectroscopy
  • Thermal analysis