Advertisement

Structural Chemistry

, Volume 28, Issue 5, pp 1399–1407 | Cite as

Effect of dispersion corrections on covalent and non-covalent interactions in DFTB calculations

  • Morteza Chehelamirani
  • Dennis R. Salahub
Original Research

Abstract

Dispersion corrections in quantum mechanical methods with the focus on non-covalent interactions have been extensively investigated in the past decade. In this paper, we elucidate the role of dispersion corrections in both non-covalent and covalent interactions within the density functional tight binding (DFTB) method. Our results suggest that two dispersion correction models, D3(BJ) and D3(CSO), generally improve different properties including barrier heights, isomerization energies, bond dissociation energies, and non-covalent binding energies. The D3(CSO) model, with fewer dispersion coefficients and DFTB-dependent parameters, was shown to perform as well as the D3(BJ) model.

Keywords

Dispersion DFTB Covalent Non-covalent D3(BJ) D3(CSO) 

Notes

Acknowledgements

Special thanks to Professor Tobias Schwabe for sharing the D3(CSO) code and for helpful comments. Chehelamirani would like to thank Dr. Maurício C. da Silva and Said Jalife Jacobo for helpful discussions. The authors would also like to acknowledge financial support from the Centre for Molecular Simulation (CMS) at the University of Calgary. D. R. S. is grateful to NSERC for ongoing Discovery Grant support. Simulations were performed using the computing resources provided by WestGrid and Compute/Calcul Canada.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2017_976_MOESM1_ESM.zip (6.9 mb)
(ZIP 6.93 MB)
11224_2017_976_MOESM2_ESM.pdf (150 kb)
(PDF 149 KB)

References

  1. 1.
    Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746CrossRefGoogle Scholar
  2. 2.
    Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112 (1):289–320CrossRefGoogle Scholar
  3. 3.
    Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev: Comput Mol Sci 1(2):211–228Google Scholar
  4. 4.
    Pribram-Jones A, Gross DA, Burke K (2015) DFT: a theory full of holes?. Annu Rev Phys Chem 66(1):283–304CrossRefGoogle Scholar
  5. 5.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15)Google Scholar
  6. 6.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Van der Waals interactions in density-functional theory. Phys Rev Lett 76:102–105CrossRefGoogle Scholar
  7. 7.
    Langreth DC, Dion M, Rydberg H, Schröder E, Hyldgaard P, Lundqvist BI (2005) Van der Waals density functional theory with applications. Int J Quantum Chem 101(5):599–610CrossRefGoogle Scholar
  8. 8.
    Sato T, Tsuneda T, Hirao K (2005) Van der Waals interactions studied by density functional theory. Mol Phys 103(6-8):1151–1164CrossRefGoogle Scholar
  9. 9.
    von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D (2004) Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys Rev Lett 93:153004CrossRefGoogle Scholar
  10. 10.
    Sun YY, Kim Y-H, Lee K, Zhang SB (2008) Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach. J Chem Phys 129(15)Google Scholar
  11. 11.
    Torres E, DiLabio GA (2012) A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP. J Phys Chem Lett 3(13):1738–1744CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241CrossRefGoogle Scholar
  13. 13.
    Brandenburg JG, Hochheim M, Bredow T, Grimme S (2014) Low-cost quantum chemical methods for noncovalent interactions. J Phys Chem Lett 5(24):4275–4284CrossRefGoogle Scholar
  14. 14.
    Burns LA, Vázquez-Mayagoitia Á, Sumpter BG, Sherrill CD (2011) Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment XDM theory, and specialized functionals. J Chem Phys 134(8):084107CrossRefGoogle Scholar
  15. 15.
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116(9):5105–5154CrossRefGoogle Scholar
  16. 16.
    Korth M, Thiel W (2011) Benchmarking semiempirical methods for thermochemistry, kinetics, and noncovalent interactions: OMx methods are almost as accurate and robust as DFT-GGA methods for organic molecules. J Chem Theory Comput 7(9):2929– 2936CrossRefGoogle Scholar
  17. 17.
    DiLabio GA, Koleini M (2014) Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory. J Chem Phys 140(18):18A542CrossRefGoogle Scholar
  18. 18.
    van Santen JA, DiLabio GA (2015) Dispersion corrections improve the accuracy of both noncovalent and covalent interactions energies predicted by a density-functional theory approximation. J Phys Chem A 119 (25):6703–6713CrossRefGoogle Scholar
  19. 19.
    Řezáč J, Hobza P (2012) Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 8(1):141–151CrossRefGoogle Scholar
  20. 20.
    Brandenburg JG, Grimme S (2014) Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). J Phys Chem Lett 5(11):1785–1789CrossRefGoogle Scholar
  21. 21.
    Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7(2):291–309CrossRefGoogle Scholar
  22. 22.
    Schröder H, Creon A, Schwabe T (2015) Reformulation of the D3(Becke–Johnson) dispersion correction without resorting to higher than C6 dispersion coefficients. J Chem Theory Comput 11(7):3163–3170CrossRefGoogle Scholar
  23. 23.
    Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26):5678–5684CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688CrossRefGoogle Scholar
  26. 26.
    Köster A, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida M, Carmona-Espindola J, Dominguez V, Flores-Moreno R, Gamboa G, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo J-M, Mejia-Rodriguez D, Reveles J, J V-P J, Vela A, Zuniga-Gutierrez B, D Salahub (2016) deMon2k, version 5. Cinvestav, Mexico CityGoogle Scholar
  27. 27.
    Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing CompanyGoogle Scholar
  28. 28.
    Wickham H, Stryjewski L (2012) 40 years of boxplots, tech. rep., had.co.nzGoogle Scholar
  29. 29.
    Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108(14):2715–2719CrossRefGoogle Scholar
  30. 30.
    Zhao Y, González-García N, Truhlar DG (2005) Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J Phys Chem A 109(9):2012–2018CrossRefGoogle Scholar
  31. 31.
    Goerigk L, Grimme S (2010) A general database for main group thermochemistry, kinetics, and noncovalent interactions—assessment of common and reparameterized (meta-)GGA density functionals. J Chem Theory Comput 6(1):107–126CrossRefGoogle Scholar
  32. 32.
    Yu L-J, Sarrami F, O’Reilly RJ, Karton A (2015) Reaction barrier heights for cycloreversion of heterocyclic rings: an Achilles’ heel for DFT and standard ab initio procedures. Chem Phys 458:1–8CrossRefGoogle Scholar
  33. 33.
    Johnson ER, Mori-Sánchez P, Cohen AJ, Yang W (2008) Delocalization errors in density functionals and implications for main-group thermochemistry. J Chem Phys 129(20):204112CrossRefGoogle Scholar
  34. 34.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Tishchenko O, Gour JR, Li W, Lutz JJ, Piecuch P, Truhlar DG (2009) Thermochemical kinetics for multireference systems: addition reactions of ozone. J Phys Chem A 113(19):5786–5799CrossRefGoogle Scholar
  36. 36.
    Gruzman D, Karton A, Martin JML (2009) Performance of ab initio and density functional methods for conformational equilibria of Cn H2n+2 alkane isomers (n = 4–8). J Phys Chem A 113(43):11974–11983CrossRefGoogle Scholar
  37. 37.
    Manna D, Martin JML (2016) What are the ground state structures of C20 and C24? An explicitly correlated ab initio approach. J Phys Chem A 120(1):153–160CrossRefGoogle Scholar
  38. 38.
    Karton A, Gruzman D, Martin JML (2009) Benchmark thermochemistry of the Cn H2n+2 alkane isomers (n = 2–8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria. J Phys Chem A 113(29):8434–8447CrossRefGoogle Scholar
  39. 39.
    Wilke JJ, Lind MC, Schaefer HF, Császár A G, Allen WD (2009) Conformers of gaseous cysteine. J Chem Theory Comput 5(6):1511–1523CrossRefGoogle Scholar
  40. 40.
    Grimme S, Steinmetz M, Korth M (2007) How to compute isomerization energies of organic molecules with quantum chemical methods. J Org Chem 72(6):2118–2126CrossRefGoogle Scholar
  41. 41.
    Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. Phys Chem Chem Phys 12:6940–6948CrossRefGoogle Scholar
  42. 42.
    Fogueri UR, Kozuch S, Karton A, Martin JM (2013) The melatonin conformer space: benchmark and assessment of wave function and DFT methods for a paradigmatic biological and pharmacological molecule. J Phys Chem A 117(10):2269– 2277CrossRefGoogle Scholar
  43. 43.
    Řeha D, Valdés H, Vondrášek J, Hobza P, Abu-Riziq A, Crews B, de Vries MS (2005) Structure and IR spectrum of phenylalanyl–glycyl–glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations. Chem – Eur J 11(23):6803–6817CrossRefGoogle Scholar
  44. 44.
    Csonka GI, French AD, Johnson GP, Stortz CA (2009) Evaluation of density functionals and basis sets for carbohydrates. J Chem Theory Comput 5(4):679–692CrossRefGoogle Scholar
  45. 45.
    Kesharwani MK, Karton A, Martin JML (2016) Benchmark ab initio conformational energies for the proteinogenic amino acids through explicitly correlated methods. assessment of density functional methods. J Chem Theory Comput 12(1):444–454CrossRefGoogle Scholar
  46. 46.
    Karton A, Daon S, Martin JM (2011) W4-11: a high-confidence benchmark dataset for computational thermochemistry derived from first-principles {W4} data. Chem Phys Lett 510(4–6):165–178CrossRefGoogle Scholar
  47. 47.
    Krieg H, Grimme S (2010) Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob’s ladder is not reversed! Mol Phys 108(19-20):2655–2666CrossRefGoogle Scholar
  48. 48.
    Řezáč J, Hobza P (2013) Describing noncovalent interactions beyond the common approximations: how accurate is the “gold standard,” CCSD(T) at the complete basis set limit? J Chem Theory Comput 9(5):2151–2155CrossRefGoogle Scholar
  49. 49.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104CrossRefGoogle Scholar
  50. 50.
    Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) Accuracy of quantum chemical methods for large noncovalent complexes. J Chem Theory Comput 9(8):3364–3374CrossRefGoogle Scholar
  51. 51.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, dna base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  52. 52.
    Řezáč J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7(8):2427–2438CrossRefGoogle Scholar
  53. 53.
    Bryantsev VS, Diallo MS, van Duin ACT, Goddard WA (2009) Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J Chem Theory Comput 5(4):1016–1026CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Centre for Molecular Simulation (CMS) and Institute for Quantum Science and Technology (IQST)University of CalgaryCalgaryCanada

Personalised recommendations