Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A comprehensive theoretical study of mutual interactions between the intramolecular hydrogen bond and π-electron delocalization of RAHB units with the benzene rings in salicylaldehyde and ortho-aminobenzaldehyde with their thio and seleno analogues

Abstract

A comprehensive theoretical study of mutual interactions between the resonance-assisted hydrogen bond (RAHB) units and benzene rings in salicylaldehyde and ortho-aminobenzaldehyde with their thio and seleno analogues, at the M062X/6-11++G(d,p) level of theory, was carried out. First, we evaluated the intramolecular hydrogen bond (IMHB) strength of the mentioned compounds by various descriptors, such as geometrical, spectroscopic, topological, molecular orbital, and energetic parameters, and then compared with the corresponding results of malonaldehyde and β-aminoacrolein with their thio and seleno analogues. According to the theoretical results, it was found that the merging of benzene rings and RAHB units reduced the strength of the IMHB in all of the benchmark systems. The magnitude of these reductions in the O-H⋯Y systems is greater than that of the N-H⋯Y ones. Also, the substitution of S and Se atoms instead of O increased the IMHB strength and obeyed the following order; X-H⋯Se > X-H⋯S > X-H⋯O. Second, a set of aromaticity indices such as the harmonic oscillator model of aromaticity (HOMA), the nucleus-independent chemical shift (NICS), the para delocalization index (PDI), and the average two-center index (ATI) were applied to evaluate the significance of the aromaticity of benzene rings and π-ED of RAHB units in the studied molecules. The comparison between these results and the respective amounts of the benzene ring, malonaldehyde, and β-aminoacrolein analogues reveals that the coupling of benzene and RAHB rings decreased the π-ED and aromaticity in both of them. These reductions approximately increase with the replacement of O by N in the proton donor group. Finally, the results show that the π-ED of RAHB units increases with substitution of O by S and Se, while for the aromaticity of the benzene rings the reverse process is observed. The majority increment in the π-ED of RAHB units and also a reduction in the aromaticity of the benzene rings are related to an X-H⋯Se system that is followed by X-H⋯S and X-H⋯O systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Hubza P, Moller-Dethlefs K (2010) Non-covalent interactions: theory and experiment; Royal Society of Chemistry, Cambridge

  2. 2.

    Scheiner S (2015) Non-covalent forces; Springer, Switzerland

  3. 3.

    Subha Sahadevi A, Narahari Sastry G (2016) Chem Rev 116:2775

  4. 4.

    Grabowski SJ (2006) Hydrogen bond; a new insight. Springer, Netherlands, Amsterdam

  5. 5.

    Jefferey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

  6. 6.

    Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford, USA

  7. 7.

    Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, Oxford

  8. 8.

    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023

  9. 9.

    Gilli G, Bertolasi V (1990) The chemistry of enols, Rappoport ZEd. Wiley, Chichester UK

  10. 10.

    Grabowski SJ (2001) J. Mol. Struct. (THEOCHEM) 562:137

  11. 11.

    Palusiak M, Simon S, Sola M (2008) J. Org. Chem. 74:2059

  12. 12.

    Rybarczyk-Pirek AJ, Grabowski SJ, Małecka M, Nawrot-Modranka J (2002) J Phys Chem A 106:11956

  13. 13.

    Wojtulewski S, Grabowski SJ (2003) Chem Phys Lett 378:388

  14. 14.

    Nowroozi A, Rahmani S, Eshraghi A, Shayan A (2015) Struct Chem 27:829

  15. 15.

    Pakiari AH, Eskandari K (2006) J. Mol. Struct. (THEOCHEM) 759:51

  16. 16.

    Woodford JN (2007) J Phys Chem A 111:8519

  17. 17.

    Nowroozi A, Raissi H (2006) J. Mol. Struct. (THEOCHEM) 759:93

  18. 18.

    Hargis JC, Evangelista FA, Ingels JB, Schaefer HF (2008) J Am Chem Soc 130:17471

  19. 19.

    Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890

  20. 20.

    Nowroozi A, Sarhadinia S, Masumian E, Nakhaei E (2014) Struct Chem 25:135

  21. 21.

    Hajiabadi H, Nowroozi A, Hasani M, Mohammadzadeh Jahani P, Raissi H (2012) Int J Quantum Chem 112:1384

  22. 22.

    Jimenez-Fabian I, Jalbout AF, Moshfeghi E, Raissi H (2008) Int J Quantum Chem 108:383

  23. 23.

    Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) J Am Chem Soc 122:10405

  24. 24.

    Durlak P, Latajka Z (2012) J Chem Theor Compt 9:65

  25. 25.

    Durlak P, Mierzwicki K, Latajka Z (2013) J Phys Chem B 117:5430

  26. 26.

    Durlak P, Latajka Z (2014) Phys Chem Chem Phys 16:23026

  27. 27.

    Yin H, Shi Y, Wang Y (2014) Spectrochim. Acta. Part A: Molecular and Biomolecular. Spectroscopy 129:280

  28. 28.

    Graña AM, Rios MA, Rodríguez J (1991) Struct Chem 2:575

  29. 29.

    Chen C, Shyu SF, HSU FS (1999) Int J Quantum Chem 74:395

  30. 30.

    Čuma M, Scheiner S, Kar T (1998) J Am Chem Soc 120:10497

  31. 31.

    Lipkowski P, Koll A, Karpfen A, Wolschann P (2002) Chem Phys Lett 360:256

  32. 32.

    Srivastava P, Rai S (1999) J Chem Sci 111:609

  33. 33.

    Modelli A, Scagnolari F, Distefano G (1999) Chem Phys 250:311

  34. 34.

    Anuradha K, Rajavel R (2012) Int J Res Inorg Chem 1:1

  35. 35.

    Yan MC, Tu Z, Lin C, Ko S, Hsu J, Yao CF (2004) J. Org. Chem. 69:1565

  36. 36.

    Ramazani A, Ahmadi E, Kazemizadeh A, Dolatyari L, Noshiranzadeh N, Eskandari I, Souldozi A (2004) Phosphorus, Sulfur and Silicon 180:2419

  37. 37.

    Levesque P, Fournier PA (2010) J. Org. Chem. 75:7033

  38. 38.

    Palomar J, Paz J, Catalan J (1999) Chem Phys 246:167

  39. 39.

    Chung G, Kwon O, Kwon Y (1998) J Phys Chem A 102:2381

  40. 40.

    Palusiak M, Simon S, Sola M (2006) J Org Chem 71:5241

  41. 41.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, PeterssonGA APY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, KomaromiI GR, Martin RL, Fox DJ, Keith T, Al-LahamMA PCY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, GonzalezC H-GM, Replogle ES, Pople JA (2003) Gaussian 03 program package. Gaussian, Inc., Pittsburgh

  42. 42.

    Biegler KF, Schonbohm J, Bayles D (2001) AIM2000: a program to analyze andvisualize atoms in molecules. J Comput Chem 22:545

  43. 43.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1990) NBO, Version 3.1

  44. 44.

    Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713

  45. 45.

    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996) J Am Chem Soc 118:6317

  46. 46.

    Schleyer PVR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes NJR (2001) V E Org Lett 3:2465

  47. 47.

    Poater J, Feradera X, Duran M, Sola M (2003) Chem Eur J 9:400

  48. 48.

    Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706

  49. 49.

    Dziembowska T (1990) Intramolecular hydrogen bonding. Akademia Rolnicza, Szczecin

  50. 50.

    Bader RFW (1990) Atoms in molecules; a quantum theory. Clarendon, Oxford

  51. 51.

    Grabowski SJ (1999) Chem Phys Lett 312:542

  52. 52.

    Popelier P (1998) J Phys Chem 102A:1873

  53. 53.

    Liang X, Pu X, Zhou H, Wong NB, Tian A (2007) J. Mol. Struct. (THEOCHEM) 816:125

  54. 54.

    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

  55. 55.

    Reed AE, Curtis LA, Weinhold FA (1998) Chem Rev 88:899

  56. 56.

    Nowroozi A, Hajiabadi H, Akbari F (2014) Struct Chem 25:251

  57. 57.

    Musin RN, Mariam YH (2006) J Phys Org Chem 19:425

  58. 58.

    Nowroozi A, Raissi H, Farzad F (2005) J. Mol. Struct. (THEOCHEM) 730:161

  59. 59.

    Buemi G, Zuccarello F (2004) J Chem Phys 306:115

  60. 60.

    Rozas I, Alkorta I, Elguero J (2001) J Phys Chem 105A:10462

  61. 61.

    Nowroozi A, Hajiabadi H (2014) Akbari F 25:251

  62. 62.

    Krygowski TM, Bankiewicz B, Czarnocki Z, Palusiak M (2015) Tetrahedron 71:4895

  63. 63.

    Nowroozi A, Nakhaei E, Masumian E (2014) Struct Chem 25:1415

  64. 64.

    Nakhaei E, Nowroozi A (2016) Comp Theor Chem 1096:27

Download references

Author information

Correspondence to Alireza Nowroozi.

Electronic supplementary material

.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rad, O.R., Nowroozi, A. A comprehensive theoretical study of mutual interactions between the intramolecular hydrogen bond and π-electron delocalization of RAHB units with the benzene rings in salicylaldehyde and ortho-aminobenzaldehyde with their thio and seleno analogues. Struct Chem 28, 1141–1149 (2017). https://doi.org/10.1007/s11224-017-0921-3

Download citation

Keywords

  • Intramolecular hydrogen bond
  • π-electron delocalization
  • Aromaticity
  • RAHB