Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Constructing a novel nonlinear optical materials: substituents and heteroatoms in π-π systems effect on the first hyperpolarizability

  • 209 Accesses

  • 2 Citations

Abstract

By doping π-π systems with Li atom, a series of Li@sandwich configuration and Li@T-shaped configuration compounds have been theoretically designed and investigated using density functional theory. It is revealed that energy gaps (E gap) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of all compounds are in a range of 0.4–0.9 ev. When Li atom is introduced into different sandwich configuration π-π systems (C60-toluene, C60-fluorobenzene, C60-phenol, C60-benzonitrile), Li@C60-benzonitrile exhibits considerable first hyperpolarizability as large as 19,759 au, which is larger by about 18,372–18,664 au than those of other compounds. When Li atom is introduced into different T-shaped configuration π-π systems (C60-pyridine, C60-pyrazine, C60-1, 3, 5-triazine, C60-pyridazine), Li@C60-pyridazine is found to present largest first hyperpolarizability up to 67,945 au in all compounds. All compounds are transparency in the deep ultraviolet spectrum range. We hope that this study could provide a new idea for designing nonlinear optical materials using π-π systems as building blocks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Sherrill CD (2013) Acc Chem Res 46:1020–1028

  2. 2.

    Mignon P, Loverix S, Geerlings P (2005) Chem Phys Lett 401:40–46

  3. 3.

    Ercolani G, Mencarelli P (2003) J Organomet Chem 68:6470–6473

  4. 4.

    Mishra BK, Sathyamurthy N (2005) J Phys Chem A 109:6–8

  5. 5.

    Grimme S (2008) Angew Chem Int Ed 47:3430–3434

  6. 6.

    Sinnokrot MO, Sherrill CD (2004) J Phys Chem A 108:10200–10207

  7. 7.

    Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:210–1250

  8. 8.

    Burley SK, Petsko GA (1985) Science 23:229

  9. 9.

    Mulliken RS (1952) J Am Chem Soc 74:811–824

  10. 10.

    Mcneil AJ, Muller P, Whitten JE, Swager TM (2006) J Am Chem Soc 128:12426–12427

  11. 11.

    Hunter CA, Meah MN, Sanders JKM (1990) J Am Chem Soc 112:5773–5780

  12. 12.

    Philp D, Stoddart JF (1996) Angew Chem, Int Ed Engl 35:1154–1196

  13. 13.

    Lerman LS (1961) J Mol Biol 3(1):18IN13–30IN14

  14. 14.

    Saenger W (1984) Principles of nucleic acid structure. Springer, New York

  15. 15.

    Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534

  16. 16.

    Arunan E, Gutowsky HS (1993) J Chem Phys 98:4294–4296

  17. 17.

    Sinnokrot MO, Valeev EF, Sherrill CDI (2002) J Am Chem Soc 124:10887–10893

  18. 18.

    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112

  19. 19.

    Sinnokrot MO, Sherrill CD (2004) J Am Chem Soc 126:7690–7697

  20. 20.

    Hohenstein EG, Sherrill CD (2009) J Phys Chem A 113:878–886

  21. 21.

    Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) J Am Chem Soc 124:9648–9655

  22. 22.

    Geskin VM, Lambert C, Brédas JL (2003) J Am Chem Soc 125:15651–15658

  23. 23.

    Ostroverkhova O, Moemer WE (2004) Chem Rev 104:3267–3314

  24. 24.

    Coe BJ (2006) Acc Chem Res 39:383–393

  25. 25.

    Xu HL, Li ZR, Wu D, Ma F, Li ZJ, Gu FL (2009) J Phys Chem C 113:4984–4986

  26. 26.

    Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) J Phys Chem C 114:19792–19798

  27. 27.

    Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) J Am Chem Soc 129:2967–2970

  28. 28.

    Wu HQ, Zhong RL, Sun SL, Xu HL, Su ZM (2014) J Phys Chem C 118:6952–6958

  29. 29.

    Wang SJ, Li Y, Wang YF, Wu D, Li ZR (2013) Phys Chem Chem Phys 15:12903–12910

  30. 30.

    Xu HL, Zhang CC, Sun SL, Su ZM (2012) Organometallics 31:4409–4414

  31. 31.

    Shelton DP, Rice JE (1994) Chem Rev 94:3–29

  32. 32.

    Willets A, Rice JE, Burland DM, Shelton DP (1992) J Chem Phys 97:7590–7599

  33. 33.

    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242

  34. 34.

    Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) Nat Chem 2:202–206

  35. 35.

    Jimenez-Halla JOC, Islas R, Heine T, Merino G (2010) Angew Chem Int Ed 49:5668–5671

  36. 36.

    Uchino T, Kurumoto N, Natsuko S (2006) Phys Rev B 73:233203

  37. 37.

    Fazio G, Ferrighi L, Valentin CD (2014) J Catal 318:203–210

  38. 38.

    Zaboli M, Raissi H (2010) Struct Chem 26:1059–1075

  39. 39.

    Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315

  40. 40.

    Zhang CC, Xu HL, Hu YY, Sun SL, Su ZM (2011) J Phys Chem A 115:2035–2040

  41. 41.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09. Gaussian Inc., Wallingford

  42. 42.

    Dennington R, Keith T, Millam JGV (2009) GaussView, version 5. Semichem, Shawnee Mission, KS

  43. 43.

    Lu T, Chen FW (2012) J Comput Chem 33:580–592

  44. 44.

    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) J Am Chem Soc 128:1072–1073

  45. 45.

    Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668

  46. 46.

    Oudar JL (1977) J Chem Phys 67:446–457

  47. 47.

    Datta A, Pati SK (2006) Chem Soc Rev 35:1305–1323

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Fujian University of Technology (GY-Z13109), the Education Department of Fujian Province (JB14075), and the Development Fund of Fujian University of Technology (GY-Z160127).

Author information

Correspondence to Yao-Dong Song or Li-Ming Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Wang, L. & Wu, L. Constructing a novel nonlinear optical materials: substituents and heteroatoms in π-π systems effect on the first hyperpolarizability. Struct Chem 28, 1623–1630 (2017). https://doi.org/10.1007/s11224-017-0918-y

Download citation

Keywords

  • π-π interaction system
  • Electronic structure
  • First hyperpolarizability