Advertisement

Structural Chemistry

, Volume 28, Issue 5, pp 1419–1427 | Cite as

Borylene as an electron-pair donor for PB pnicogen bonds

  • Ibon Alkorta
  • José Elguero
  • Janet E. Del Bene
Original Research

Abstract

Ab initio MP2/aug’-cc-pVTZ calculations have been performed on the complexes (CO)2(HB):PXH2 and (N2)2(HB):PXH2, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, in order to investigate the properties of these complexes which are stabilized by P B pnicogen bonds, with B the electron-pair donor. The binding energies of these complexes exhibit an exponential dependence on the P-B distance, but they do not correlate with the MEP minima for (CO)2(HB) and (N2)2(HB), nor with the MEP maxima for PXH2. For fixed X, the binding energy of (N2)2(HB):PXH2 is greater than that of (CO)2(HB):PXH2. Charge-transfer stabilizes both series of complexes, and occurs from the B electron pair to the antibonding P-A σ orbital, with A the atom of X directly bonded to P. These charge-transfer energies also exhibit an exponential dependence on the P-B distance. In the complexes (CO)2(HB):PXH2, there is a second charge-transfer interaction from the lone pair on P to the antibonding π orbitals of the two C-O groups. Electron density analyses indicate that the P B bonds in these complexes are stabilized by relatively weak interactions with little covalent character. The chemical shieldings of 11B are essentially unaffected by complex formation. In contrast, the shieldings of 31P increase from 10 to 50 ppm in the four most strongly bound complexes, but decrease by −4 to −12 ppm in the remaining complexes. For each series of complexes, EOM-CCSD spin-spin coupling constants 1pJ(P-B) increase quadratically with decreasing P-B distance. For fixed X, 1pJ(P-B) is greater for (CO)2(HB):PXH2 compared to (N2)2(HB):PXH2.

Keywords

Borylene Boranylidene PB pnicogen bonds Structures and binding energies Charge-transfer interactions Chemical shieldings EOM-CCSD spin-spin coupling constants 

Notes

Acknowledgments

This work was carried out with financial support from the Ministerio de Economía y Competitividad (Project No. CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (S2013/MIT2841, Fotocarbon). Thanks are also given to the Ohio Supercomputer Center and CTI (CSIC) for their continued computational support.

Supplementary material

11224_2017_912_MOESM1_ESM.doc (1.8 mb)
ESM 1 (DOC 1866 kb)

References

  1. 1.
    Moss RA, Doyle MP (2014) Contemporary carbene chemistry. In: Rokita SE (ed) Wiley series on reactive intermediates in chemistry and biology. Wiley, HobokenGoogle Scholar
  2. 2.
    Cazin CSJ (2011) N-Heterocyclic carbenes in transition metal catalysis and organocatalysis. In: Bianchini C, Cole-Hamilton DJ, van Leeuwen PWNM (eds) Catalysis by metal complexes, vol 32. Springer, DordrechtGoogle Scholar
  3. 3.
    Alkorta I, Elguero J (1996) J Phys Chem 100:19367–19370CrossRefGoogle Scholar
  4. 4.
    Hollóczki O (2016) Phys Chem Chem Phys 18:126–140CrossRefGoogle Scholar
  5. 5.
    Lv H, Zhuo HY, Li QZ, Yang X, Li WZ, Cheng JB (2014) Mol Phys 112:3024–3032CrossRefGoogle Scholar
  6. 6.
    Donoso-Tauda O, Jaque P, Elguero J, Alkorta I (2014) J Phys Chem A 118:9552–9560CrossRefGoogle Scholar
  7. 7.
    Greenwood NN, Earnshow A (1984) Chemistry of elements, Chapter 6 edn. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Bickelhaupt FM, Radius U, Ehlers AW, Hoffmann R, Baerends EJ (1998) New J Chem 22:1–3CrossRefGoogle Scholar
  9. 9.
    Radius U, Bickelhaupt FM, Ehlers AW, Goldberg N, Hoffmann R (1998) Inorg Chem 37:1080–1090CrossRefGoogle Scholar
  10. 10.
    Rozas I, Alkorta I, Elguero J (1999) J Phys Chem A 103:8861–8869CrossRefGoogle Scholar
  11. 11.
    Alkorta I, Soteras I, Elguero J, Del Bene JE (2011) Phys Chem Chem Phys 13:14026–14032CrossRefGoogle Scholar
  12. 12.
    Celik MA, Sure R, Klein S, Kinjo R, Bertand G, Frenking G (2012) Chem Eur J 18:5676–5692CrossRefGoogle Scholar
  13. 13.
    Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Science 333:610–613CrossRefGoogle Scholar
  14. 14.
    Braunschweig H, Dewhurst RD, Hupp F, Nutz M, Radacki K, Tate CW, Vargas A, Ye Q (2015) Nature 522:327–330CrossRefGoogle Scholar
  15. 15.
    Alkorta I, Elguero J, Del Bene JE (2016) ChemPhysChem 17:3112–3119CrossRefGoogle Scholar
  16. 16.
    Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem, Quantum Chem Symp 10:1–19CrossRefGoogle Scholar
  17. 17.
    Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100CrossRefGoogle Scholar
  18. 18.
    Bartlett RJ, Silver DM (1975) J Chem Phys 62:3258–3268CrossRefGoogle Scholar
  19. 19.
    Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 4:561–581CrossRefGoogle Scholar
  20. 20.
    Del Bene JE (1993) J Phys Chem 97:107–110CrossRefGoogle Scholar
  21. 21.
    Dunning TH (1989) J Chem Phys 90:007–1023CrossRefGoogle Scholar
  22. 22.
    Woon DE, Dunning TH (1995) J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian, Inc.: Wallingford CT, Gaussian–09, Revision D.01Google Scholar
  24. 24.
    Bader RFW (1991) Chem Rev 91:893–928CrossRefGoogle Scholar
  25. 25.
    Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Popelier PLA (2000) Atoms In Molecules. An Introduction, Prentice Hall, Harlow, EnglandGoogle Scholar
  27. 27.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  28. 28.
    Keith TA (2011) AIMAll (Version 11.08.23), TK Gristmill Software, Overland Park KS, USA, (aim.tkgristmill.com)Google Scholar
  29. 29.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  30. 30.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. University of Wisconsin, Madison, WIGoogle Scholar
  31. 31.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  32. 32.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785789Google Scholar
  33. 33.
    Ditchfield R (1974) Mol Phys 27:789–807CrossRefGoogle Scholar
  34. 34.
    Perera SA, Nooijen M, Bartlett RJ (1996) J Chem Phys 104:3290–3305CrossRefGoogle Scholar
  35. 35.
    Perera SA, Sekino H, Bartlett RJ (1994) J Chem Phys 101:2186–2196CrossRefGoogle Scholar
  36. 36.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  37. 37.
    Del Bene JE, Elguero J, Alkorta I, Yañez M, Mó O (2006) J Phys Chem A 110:9959–9966CrossRefGoogle Scholar
  38. 38.
    Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PS, Lauderdale WJ, Gwaltney SR, Beck S, et al. Aces Ii. University of Florida, Gainesville, FlGoogle Scholar
  39. 39.
    Del Bene JE, Alkorta I, Elguero J (2013) J Phys Chem A 117:6893–6903CrossRefGoogle Scholar
  40. 40.
    Knop O, Boyd RJ, Choi SC (1988) J Am Chem Soc 110:7299–7301CrossRefGoogle Scholar
  41. 41.
    Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Phys Chem Minerals 25:585–590CrossRefGoogle Scholar
  42. 42.
    Alkorta I, Barrios L, Rozas I, Elguero J (2000) J Mol Struct THEOCHEM 496:131–137CrossRefGoogle Scholar
  43. 43.
    Knop O, Rankin KN, Boyd RJ (2001) J Phys Chem A 105:6552–6566CrossRefGoogle Scholar
  44. 44.
    Alkorta I, Rozas I, Elguero J (2001) J Phys Chem 105:743–749CrossRefGoogle Scholar
  45. 45.
    Knop O, Rankin KN, Boyd RJ (2003) J Phys Chem A 107:272–284CrossRefGoogle Scholar
  46. 46.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542CrossRefGoogle Scholar
  47. 47.
    Alkorta I, Elguero J (2004) Struct Chem 15:117–120CrossRefGoogle Scholar
  48. 48.
    Tang TH, Deretey E, Jensen SJK, Csizmadia IG (2006) Eur Phys J D 37:217–222CrossRefGoogle Scholar
  49. 49.
    Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:10497–10503CrossRefGoogle Scholar
  50. 50.
    Pople JA (1964) Mol Phys 7:301–306CrossRefGoogle Scholar
  51. 51.
    Kalinowski HO, Berger S, Braun S (1988) Carbon-13 NMR spectroscopy. John Wiley & Sons, Chichester, p. 104Google Scholar
  52. 52.
    Berger S, Braun S, Kalinowski HO (1997) NMR spectroscopy of the non-metallic elements. John Wiley & Sons, Chichester, p. 85Google Scholar
  53. 53.
    Reed L (1999) J Chem Educ 76:802–804CrossRefGoogle Scholar
  54. 54.
    Del Bene JE (2004) In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Wiley-VCH, Weinheim, p. 353CrossRefGoogle Scholar
  55. 55.
    Del Bene JE, Alkorta I, Elguero J (2015) In: Scheiner S (ed) Noncovalent forces, Springer International Publishing, Switzerland, p. 191Google Scholar
  56. 56.
    Del Bene JE, Alkorta I, Elguero J (2016) Chem Phys Lett 655:115–119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto de Química Médica (IQM-CSIC)MadridSpain
  2. 2.Department of ChemistryYoungstown State UniversityYoungstownUSA

Personalised recommendations