Structural Chemistry

, Volume 28, Issue 4, pp 1009–1015 | Cite as

How strong are H-bonds at the fully hydroxylated silica surfaces? Insights from the B3LYP electron density topological analysis

  • Federico Musso
  • Silvia Casassa
  • Marta Corno
  • Piero UgliengoEmail author
Original Research


The calculation through the supermolecular approach of the hydrogen bond strength EHB between silanol groups at the surface of an ample class of silica-based materials is hindered by the intrinsic difficulty to define the “H-bond free” reference system. We propose, for the first time, to evaluate EHB by adopting the literature empirical correlation relating the Bader local electronic kinetic energy density Gb computed at the H⋅⋅⋅O bond critical point with EHB. Remarkably, EHB for the hydroxylated surfaces of quartz polymorphs correlates with surface formation energy, showing that the surface EHB is responsible of the surface stability. A number of correlations between hydrogen bond features are established, with that between EHB and the enhanced infrared intensity associated to surface hydrogen bond formation, obeying the literature formula semi-quantitatively. The present results are quite general and can be extended to other inorganic surfaces where hydrogen bonds between surface sites are the dominant features.


Crystalline silica surfaces B3LYP-D* Hydrogen bond strength Bader topological analysis Surface silanols 



Authors are very grateful to Prof. Carlo Gatti (CNR, Milano) for useful discussion and assistance. Compagnia di San Paolo and University of Turin are gratefully acknowledged for funding Project ORTO114XNH through “Bando per il finanziamento di progetti di ricerca di Ateneo – anno 2011”.


  1. 1.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory, 1st edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Jensen F (1999) Introduction to computational chemistry. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  3. 3.
    Musso F, Sodupe M, Corno M, Ugliengo P (2009) H-bond features of fully hydroxylated surfaces of crystalline silica polymorphs: a periodic B3LYP study. J Phys Chem C 113(41):17876–17884CrossRefGoogle Scholar
  4. 4.
    Musso F, Ugliengo P, Sodupe M (2011) Do H-bond features of silica surfaces affect the H2O and NH3 adsorption? Insights from periodic B3LYP calculations. J Phys Chem A 115(41):11221–11228. doi: 10.1021/Jp203988j CrossRefGoogle Scholar
  5. 5.
    Vener MV, Egorova AN, Churakov AV, Tsirelson VG (2012) Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J Comp Chem 33(29):2303–2309. doi: 10.1002/jcc.23062 CrossRefGoogle Scholar
  6. 6.
    Mata I, Alkorta I, Espinosa E, Molins E (2011) Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem Phys Lett 507:185–189CrossRefGoogle Scholar
  7. 7.
    Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173CrossRefGoogle Scholar
  8. 8.
    Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching v(XH) vibration in infrared spectra. Spectrochim Acta A 55(7–8):1585–1612. doi: 10.1016/s1386-1425(98)00348-5 CrossRefGoogle Scholar
  9. 9.
    Rozenberg M, Loewenschuss A, Marcus Y (2000) An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys Chem Chem Phys 2(12):2699–2702. doi: 10.1039/B002216k CrossRefGoogle Scholar
  10. 10.
    Bolis V, Fubini B, Marchese L, Martra G, Costa D (1991) Hydrophilic and hydrophobic sites on variously dehydrated crystalline and amorphous silicas. J Chem Soc Faraday Trans 87:497–505CrossRefGoogle Scholar
  11. 11.
    Ugliengo P, Viterbo D, Chiari G (1993) MOLDRAW: molecular graphics on a personal computer. Z Kristallogr 207:9–23Google Scholar
  12. 12.
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D'Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Intern J Quantum Chem 114(19):1287–1317. doi: 10.1002/qua.24658 CrossRefGoogle Scholar
  13. 13.
    Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D'Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 User's manual. University of Torino, TorinoGoogle Scholar
  14. 14.
    Pisani C, Dovesi R, Roetti C (1988) Hartree-Fock ab initio treatment of crystalline systems. In: lecture notes in chemistry, vol 48. Springer-Verlag, Berlin, p. 193CrossRefGoogle Scholar
  15. 15.
    Civalleri B, D'arco P, Orlando R, Saunders VR, Dovesi R (2001) Hartree-Fock geometry optimization of periodic systems with the CRYSTAL code. Chem Phys Lett 228:131–138CrossRefGoogle Scholar
  16. 16.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-basis set for atoms Li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  17. 17.
    Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. Cryst Eng Commun 10:405–410CrossRefGoogle Scholar
  18. 18.
    Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange J Chem Phys 98:5648–5652Google Scholar
  19. 19.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  20. 20.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  21. 21.
    Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D'Arco P, Llunell M (2009) CRYSTAL09 User's manual. University of Torino, TorinoGoogle Scholar
  22. 22.
    Tosoni S, Pascale F, Ugliengo P, Orlando R, Saunders VR, Dovesi R (2005) Quantum mechanical calculation of the OH vibrational frequency in crystalline solids. Mol Phys 103(18):2549–2558CrossRefGoogle Scholar
  23. 23.
    Dall’Olio S, Dovesi R, Resta R (1997) Spontaneous polarization as a berry phase of the Hartree-Fock wave function: the case of KNbO3. Phys Rev B 56:10105–10114CrossRefGoogle Scholar
  24. 24.
    Gatti C, Saunders VR, Roetti C (1994) Crystal field effects on the topological properties of the electron density in molecular crystals: the case of urea. J Chem Phys 101(12):10686–10696. doi: 10.1063/1.467882 CrossRefGoogle Scholar
  25. 25.
    Gatti C, Casassa S (2013) TOPOND-2013 : an electron density topological program for systems periodic in N (N = 0–3) dimensions. User's Manual - CNR-CSRSRC, Milano, ItalyGoogle Scholar
  26. 26.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, Oxford, UKGoogle Scholar
  27. 27.
    Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220(5–6):399–457. doi: 10.1524/zkri.220.5.399.65073 Google Scholar
  28. 28.
    Banerjee A, Adams N, Simons J, Shepard R (1985) Search for stationary points on surfaces. J Phys Chem 89(1):52–57. doi: 10.1021/j100247a015 CrossRefGoogle Scholar
  29. 29.
    Popelier PLA (1994) A robust algorithm to locate automatically all types of critical points in the charge density and its Laplacian. Chem Phys Lett 228(1–3):160–164. doi: 10.1016/0009-2614(94)00897-3 CrossRefGoogle Scholar
  30. 30.
    Tsendra O, Scott AM, Gorb L, Boese AD, Hill FC, Ilchenko MM, Leszczynska D, Leszczynski J (2014) Adsorption of nitrogen-containing compounds on the (100) alpha-quartz surface: ab initio cluster approach. J Phys Chem C 118(6):3023–3034. doi: 10.1021/jp406827h CrossRefGoogle Scholar
  31. 31.
    Ugliengo P, Pascale F, Merawa M, Labeguerie P, Tosoni S, Dovesi R (2004) Infrared spectra of hydrogen-bonded ionic crystals: ab initio study of Mg(OH)2 and β-Be(OH)2. J Phys Chem B 108(36):13632–13637. doi: 10.1021/Jp047514v CrossRefGoogle Scholar
  32. 32.
    Pascale F, Tosoni S, Zicovich-Wilson CM, Ugliengo P, Orlando R, Dovesi R (2004) Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chem Phys Lett 396(4–6):308–315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Intelligent Pharma, Parc Científic de BarcelonaBarcelonaSpain
  2. 2.Dipartimento di Chimica and NIS, Nanostructured Interfaces and SurfaceUniversity of TorinoTorinoItaly

Personalised recommendations