Structural Chemistry

, Volume 28, Issue 1, pp 225–234 | Cite as

Finite sets of operations sufficient to construct any fullerene from C20

  • Victor M. Buchstaber
  • Nikolay Yu. Erokhovets
Original Research

Abstract

We study the well-known problem of combinatorial classification of fullerenes. By a (mathematical) fullerene we mean a convex simple three-dimensional polytope with all facets pentagons and hexagons. We analyse approaches of construction of arbitrary fullerene from the dodecahedron (a fullerene C20). A growth operation is a combinatorial operation that substitutes the patch with more facets and the same boundary for the patch on the surface of a simple polytope to produce a new simple polytope. It is known that an infinite set of different growth operations transforming fullerenes into fullerenes is needed to construct any fullerene from the dodecahedron. We prove that if we allow a polytope to contain one exceptional facet, which is a quadrangle or a heptagon, then a finite set of growth operations is sufficient. We analyze pairs of objects: a finite set of operations, and a family of acceptable polytopes containing fullerenes such that any polytope of the family can be obtained from the dodecahedron by a sequence of operations from the corresponding set. We describe explicitly three such pairs. First two pairs contain seven operations, and the last – eleven operations. Each of these operations corresponds to a finite set of growth operations and is a composition of edge- and two edges-truncations.

Keywords

Fullerenes Growth operations Finite sets Polytopes Edge-truncations Dodecahedron 

References

  1. 1.
    Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. University Press, CambridgeGoogle Scholar
  2. 2.
    Grünbaum B (2003) Convex polytopes (2nd Edition). Graduate texts in mathematics 221. Springer, New YorkGoogle Scholar
  3. 3.
    Ziegler GM (2007) Lectures on polytopes (7th Printing). Graduate texts in mathematics, 152, SpringerGoogle Scholar
  4. 4.
    Curl RF (1996) Dawn of the fullerenes: experiment and conjecture, Nobel LectureGoogle Scholar
  5. 5.
    Kroto H (1996) Symmetry, space, stars and C 60, Nobel LectureGoogle Scholar
  6. 6.
    Smalley RE (1996) Discovering the fullerenes. Nobel LectureGoogle Scholar
  7. 7.
    Thurston WP (1998) Shapes of polyhedra and triangulations of the sphere. Geom Top Monogr 1:511–549CrossRefGoogle Scholar
  8. 8.
    Brinkmann G, Dress AWM (1997) A constructive enumeration of fullerenes. J Algorithms 23(2):345–358CrossRefGoogle Scholar
  9. 9.
    Brinkmann G, Goedgebeur J, McKay BD (2012) The generation of fullerenes. J Chem Inf Model 52:2910–2918CrossRefGoogle Scholar
  10. 10.
    Brinkmann G, Coolsaet K, Goedgebeur J, Mélot H (2013) House of graphs: a database of interesting graphs. Discret. Appl. Math. 161:311–314. http://hog.grinvin.org CrossRefGoogle Scholar
  11. 11.
    Brinkmann G, Franceus D, Fowler PW, Graver JE (2006) Growing fullerenes from seed: growth transformations of fullerene polyhedra. Chem Phys Lett 428(46):386–393CrossRefGoogle Scholar
  12. 12.
    Hasheminezhad M, Fleischner H, McKay BD (2008) A universal set of growth operations for fullerenes. Chem Phys Lett 464:118–121CrossRefGoogle Scholar
  13. 13.
    Brinkmann G, Fowler PW (2003) A catalogue of growth transformations of fullerene polyhedra. J Chem Inf Comp Sci 43:837–1843CrossRefGoogle Scholar
  14. 14.
    Yoshida M, Fowler PW (1997) Systematic relationships between fullerenes without spirals. Chem Phys Lett 278:256–261CrossRefGoogle Scholar
  15. 15.
    Brinkmann G, Graver JE, Justus C (2009) Numbers of faces in disordered patches. J Math Chem 45 (2):263–278CrossRefGoogle Scholar
  16. 16.
    Andova V, Kardoš F, Škrekovski R (2016) Mathematical aspects of fullerenes. Ars Mat. Contemp. 11:353–379Google Scholar
  17. 17.
    Endo M, Kroto HW (1992) Formation of carbon nanofibers. J Phys Chem 96:6941–6944CrossRefGoogle Scholar
  18. 18.
    Eberhard V (1891) Zur Morphologie der Polyheder. LeipzigGoogle Scholar
  19. 19.
    Brückner M (1900) Vielecke und Vielflache. LeipzigGoogle Scholar
  20. 20.
    Erokhovets NY (2015) k-belts and edge cycles of simple 3-polytopes with at most hexagonal facets (in russian). Far Eastern Math J 15(2):197–213Google Scholar
  21. 21.
    Došlić T (1998) On lower bounds of number of perfect matchings in fullerene graphs. J Math Chem 24:359–364CrossRefGoogle Scholar
  22. 22.
    Došlić T (2003) Cyclical edge-connectivity of fullerene graphs and (k,6)-cages. J Math Chem 33(2):103–112CrossRefGoogle Scholar
  23. 23.
    Kardoš F, Skrekovski R (2008) Cyclic edge-cuts in fullerene graphs. J Math Chem 22:121–132CrossRefGoogle Scholar
  24. 24.
    Kutnar K, Marušič D (2008) On cyclic edge-connectivity of fullerenes. Discrete Appl Math 156:1661–1669CrossRefGoogle Scholar
  25. 25.
    Kardoš F, Krnc M, Lužar B, Skrekovski R (2010) Cyclic 7-edge-cuts in fullerene graphs. J Math Chem 47(2):771–789CrossRefGoogle Scholar
  26. 26.
    Buchstaber VM, Erokhovets NY (2015) Graph-truncations of simple polytopes. P Steklov Inst Math 289:104–133CrossRefGoogle Scholar
  27. 27.
    Buchstaber VM, Erokhovets NY (2015) Construction of fullerenes. arXiv:http://arxiv.org/abs/1510.02948
  28. 28.
    Buchstaber VM, Erokhovets NY (2016) Fullerenes, polytopes and toric topology. Lecture Note Series, IMS, NUS, Singapore. arXiv:http://arxiv.org/abs/1609.02949
  29. 29.
    Deza M, Dutour Sikirić M, Shtogrin MI (2013) Fullerenes and disk-fullerenes. Russ Math Surv+ 68 (4):665–720CrossRefGoogle Scholar
  30. 30.
    Huang JY (2007) Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. Phys Rev Lett PRL 99:175503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Victor M. Buchstaber
    • 1
  • Nikolay Yu. Erokhovets
    • 1
  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations