Structural Chemistry

, Volume 28, Issue 2, pp 345–355 | Cite as

An insight on the aromatic changes in closed shell icosagen, tetrel, and pnictogen phenalenyl derivatives

  • Cristina Trujillo
  • Goar Sánchez-Sanz
  • Ibon Alkorta
  • José Elguero
Original Research

Abstract

A computational study of the aromatic and antiaromatic characteristics of closed shell charged phenalenyl (PLY+1 and PLY−1) upon replacement of the central carbon atom by icosagen (B, Al and Ga), tetrel (Si and Ge) and pnictogen (N, P and As) atoms comprising systems in which the icosagen and pnictogen derivatives considered are neutral while the tetrel ones are anions or cations, has been carried out at the B3LYP/6–311++G(d,p) computational level. By substitution, two different kinds of structures have been obtained, one planar (N and B) and another one bowl-shaped depending on the size of the central atom. In terms of aromaticity, the substitution of the central C atom causes a loss of the aromatic character in all cases as indicated by nucleus-independent chemical shifts (NICS) profiles and NICS values on the 0.001 au isosurface. Regarding the charge, PLY+1 presents larger electron delocalisation than PLY−1, phenomenon associated with aromaticity. Furthermore, the current density maps for those planar systems corroborate NICS findings, showing anticlockwise currents in PLY+1 (like in benzene) but clockwise in PLY-N0 and PLY-B0, indicating aromatic and antiaromatic behaviour, respectively.

Keywords

Aromaticity NICS Wiberg bond indices Tetrel Pnictogen Icosagen Phenalenyl 

Supplementary material

11224_2016_882_MOESM1_ESM.doc (460 kb)
ESM 1(DOC 460 kb)

References

  1. 1.
    Sun Z, Wu J (2012) J Mater Chem 22:4151–4160CrossRefGoogle Scholar
  2. 2.
    Roy SR, Nijamudheen A, Pariyar A, Ghosh A, Vardhanapu PK, Mandal PK, Datta A, Mandal SK (2014) ACS Catal 4:4307–4319CrossRefGoogle Scholar
  3. 3.
    Li D, Liu M, Chen J, Lan J, Huang X, Wu H (2013) Dyes Pigments 97:389–396CrossRefGoogle Scholar
  4. 4.
    Späth A, Leibl C, Cieplik F, Lehner K, Regensburger J, Hiller K-A, Bäumler W, Schmalz G, Maisch T (2014) J Med Chem 57:5157–5168CrossRefGoogle Scholar
  5. 5.
    Elsebai MF, Saleem M, Tejesvi MV, Kajula M, Mattila S, Mehiri M, Turpeinen A, Pirttila AM (2014) Nat Prod Rep 31:628–645CrossRefGoogle Scholar
  6. 6.
    Reid DH (1958) Tetrahedron 3:339–352CrossRefGoogle Scholar
  7. 7.
    Morita Y, Nishida S (2010) Phenalenyls, Cyclopentadienyls, ans other carbon-centered radicals. Wiley-Interscience, ChichesterGoogle Scholar
  8. 8.
    Sogo PB, Nakazaki M, Calvin M (1957) J Chem Phys 26:1343–1345CrossRefGoogle Scholar
  9. 9.
    Morita Y, Suzuki S, Fukui K, Nakazawa S, Kitagawa H, Kishida H, Okamoto H, Naito A, Sekine A, Ohashi Y, Shiro M, Sasaki K, Shiomi D, Sato K, Takui T, Nakasuji K (2008) Nat Mater 7:48–51CrossRefGoogle Scholar
  10. 10.
    Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564–6568CrossRefGoogle Scholar
  11. 11.
    Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482–5486CrossRefGoogle Scholar
  12. 12.
    Itkis ME, Chi X, Cordes AW, Haddon RC (2002) Science 296:1443–1445CrossRefGoogle Scholar
  13. 13.
    Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J (1999) J Am Chem Soc 121:1619–1620CrossRefGoogle Scholar
  14. 14.
    Cyrański MK, Havenith RWA, Dobrowolski MA, Gray BR, Krygowski TM, Fowler PW, Jenneskens LW (2007) Chem Eur J 13:2201–2207CrossRefGoogle Scholar
  15. 15.
    Morita Y, Suzuki S, Sato K, Takui T (2011) Nat Chem 3:197–204CrossRefGoogle Scholar
  16. 16.
    O’Connor GD, Troy TP, Roberts DA, Chalyavi N, Fückel B, Crossley MJ, Nauta K, Stanton JF, Schmidt TW (2011) J Am Chem Soc 133:14554–14557CrossRefGoogle Scholar
  17. 17.
    Broser W, Kurreck H, Oestreich-Janzen S, Schlömp G, Fey HJ, Kirste B (1979) Tetrahedron 35:1159–1166CrossRefGoogle Scholar
  18. 18.
    Hicks RG (2007) Org Biomol Chem 5:1321–1338CrossRefGoogle Scholar
  19. 19.
    Nishida S, Kariyazono K, Yamanaka A, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y (2011) Chemi Asian J 6:1188–1196CrossRefGoogle Scholar
  20. 20.
    Wang M-Z, Cai X-H, Luo X-D (2011) Helv Chim Acta 94:61–66CrossRefGoogle Scholar
  21. 21.
    Sarkar A, Pal SK, Itkis ME, Tham FS, Haddon RC (2012) J Mater Chem 22:8245–8256CrossRefGoogle Scholar
  22. 22.
    Mukherjee A, Sen TK, Ghorai PK, Mandal SK (2013) Sci Rep 3:2821CrossRefGoogle Scholar
  23. 23.
    Lenk R, Tessier A, Lefranc P, Silvestre V, Planchat A, Blot V, Dubreuil D, Lebreton J (2014) J Org Chem 79:9754–9761CrossRefGoogle Scholar
  24. 24.
    Romero-Nieto C, López-Andarias A, Egler-Lucas C, Gebert F, Neus J-P, Pilgram O (2015) Angew Chem Int Ed. 54:15872–15875Google Scholar
  25. 25.
    Zoellner JM, Zoellner RW (2008) J Mol Struc THEOCHEM 863:50–54CrossRefGoogle Scholar
  26. 26.
    Piccinato MT, da Costa MF, Ota AT, Guedes CLB, Di Mauro E (2015) Magn Reson Chem 53:99–102CrossRefGoogle Scholar
  27. 27.
    Haddon R (1975) Aust J Chem 28:2343–2351CrossRefGoogle Scholar
  28. 28.
    Kinoshita K, Kawakami T, Yoshimura S, Saito T, Kitagawa Y, Yamanaka S, Okumura M, Yamaguchi K (2015) Bull Chem Soc Jpn 88:149–161CrossRefGoogle Scholar
  29. 29.
    Quiñonero D, Frontera A, Deyà PM, Alkorta I, Elguero J (2008) Chem Phys Lett 460:406–410CrossRefGoogle Scholar
  30. 30.
    Pogodin S, Agranat I (2007) J Org Chem 72:10096–10107CrossRefGoogle Scholar
  31. 31.
    Tian Y-H, Sumpter BG, Du S, Huang J (2015) J Phys Chem Lett 6:2318–2325CrossRefGoogle Scholar
  32. 32.
    Zoellner JM, Zoellner RW (2009) J Mol Struc THEOCHEM 904:49–56CrossRefGoogle Scholar
  33. 33.
    Mou Z, Uchida K, Kubo T, Kertesz M (2014) J Am Chem Soc 136:18009–18022CrossRefGoogle Scholar
  34. 34.
    Hou Y, Wang H, Li Z, Liu Y, Wan X, Xue X, Chen Y, Yu A (2011) Tetrahedron Lett 52:3670–3673CrossRefGoogle Scholar
  35. 35.
    Mukherjee A, Sen T, Mandal S, Kratzert D, Stalke D, DÖRing A, Schulzke C (2011) J Chem Sci 123:139–144CrossRefGoogle Scholar
  36. 36.
    Berg DJ, Sun J, Twamley B (2006) Chem Commun 38:4019–4021CrossRefGoogle Scholar
  37. 37.
    Suzuki S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K (2006) J Am Chem Soc 128:2530–2531CrossRefGoogle Scholar
  38. 38.
    Chen S, Sun S-L, Wu H-Q, Xu H-L, Zhao L, Su Z-M (2014) Dalton Trans 43:12657–12662CrossRefGoogle Scholar
  39. 39.
    Cui Z-H, Lischka H, Beneberu HZ, Kertesz M (2014) J Am Chem Soc 136:5539–5542CrossRefGoogle Scholar
  40. 40.
    Kolb B, Kertesz M, Thonhauser T (2013) J Phys Chem A 117:3642–3649CrossRefGoogle Scholar
  41. 41.
    Zaitsev V, Rosokha SV, Head-Gordon M, Kochi JK (2006) J Org Chem 71:520–526CrossRefGoogle Scholar
  42. 42.
    Lü J-M, Rosokha SV, Kochi JK (2003) J Am Chem Soc 125:12161–12171CrossRefGoogle Scholar
  43. 43.
    Small D, Zaitsev V, Jung Y, Rosokha SV, Head-Gordon M, Kochi JK (2004) J Am Chem Soc 126:13850–13858CrossRefGoogle Scholar
  44. 44.
    Small D, Rosokha SV, Kochi JK, Head-Gordon M (2005) J Phys Chem A 109:11261–11267CrossRefGoogle Scholar
  45. 45.
    Takeuchi H (2013) Comput Theor Chem 1021:84–90CrossRefGoogle Scholar
  46. 46.
    Wang L, Wang W-Y, Ma N-N, Tian D-M, Wang J, Qiu Y-Q (2015) J Mol Graph Model 55:33–40CrossRefGoogle Scholar
  47. 47.
    Mou Z, Kubo T, Kertesz M (2015) Chem Eur J. 21:18230–18236Google Scholar
  48. 48.
    Sen TK, Mukherjee A, Modak A, Ghorai PK, Kratzert D, Granitzka M, Stalke D, Mandal SK (2012) Chem Eur J 18:54–58CrossRefGoogle Scholar
  49. 49.
    Lin S, Boudjouk P (1980) J Organomet Chem 187:C11–C14CrossRefGoogle Scholar
  50. 50.
    Akhmedov NG, Malyugina SG, Mstislavsky VI, Oprunenko YF, Roznyatovsky VA, Ustynyuk YA, Batsanov AS, Ustynyuk NA (1998) Organometallics 17:4607–4619CrossRefGoogle Scholar
  51. 51.
    Chi X, Itkis ME, Patrick BO, Barclay TM, Reed RW, Oakley RT, Cordes AW, Haddon RC (1999) J Am Chem Soc 121:10395–10402CrossRefGoogle Scholar
  52. 52.
    Mandal SK, Itkis ME, Chi X, Samanta S, Lidsky D, Reed RW, Oakley RT, Tham FS, Haddon RC (2005) J Am Chem Soc 127:8185–8196CrossRefGoogle Scholar
  53. 53.
    Mandal SK, Samanta S, Itkis ME, Jensen DW, Reed RW, Oakley RT, Tham FS, Donnadieu B, Haddon RC (2006) J Am Chem Soc 128:1982–1994CrossRefGoogle Scholar
  54. 54.
    Pal SK, Itkis ME, Tham FS, Reed RW, Oakley RT, Haddon RC (2005) Science 309:281–284CrossRefGoogle Scholar
  55. 55.
    Li H, Liu F, Xiao Y, Pellechia PJ, Smith MD, Qian X, Wang G, Wang Q (2014) Tetrahedron 70:5872–5877CrossRefGoogle Scholar
  56. 56.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2016) Tetrahedron 72:4690–4699CrossRefGoogle Scholar
  57. 57.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  58. 58.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  59. 59.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  60. 60.
    Binning RC, Curtiss LA (1990) J Comput Chem 11:1206–1216CrossRefGoogle Scholar
  61. 61.
    McGrath MP, Radom L (1991) J Chem Phys 94:511–516CrossRefGoogle Scholar
  62. 62.
    Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC, Radom L (1995) J Chem Phys 103:6104–6113CrossRefGoogle Scholar
  63. 63.
    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  64. 64.
    London F (1937) J Phys Radium 8:397–409CrossRefGoogle Scholar
  65. 65.
    Ditchfield R (1974) Mol Phys 27:789–807CrossRefGoogle Scholar
  66. 66.
    Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2012) Tetrahedron 68:6548–6556CrossRefGoogle Scholar
  67. 67.
    Sánchez-Sanz G, Trujillo C, Rozas I, Elguero J (2013) Tetrahedron 69:7333–7344CrossRefGoogle Scholar
  68. 68.
    Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  69. 69.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ (2009) Gaussian 09, Revision d1, Inc., Wallingford CTGoogle Scholar
  70. 70.
    Silva AMS, Sousa RMS, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008) Magn Reson Chem 46:859–864CrossRefGoogle Scholar
  71. 71.
    Dobrowolski JC, Lipinski PFJ (2016) RSC Adv 6:23900–23904CrossRefGoogle Scholar
  72. 72.
    Fowler PW, Steiner E (1997) J Phys Chem A 101:1409–1413CrossRefGoogle Scholar
  73. 73.
    Fowler PW, Steiner E, Havenith RWA, Jenneskens LW (2004) Magn Reson Chem 42:S68–S78CrossRefGoogle Scholar
  74. 74.
    Bean DE, Fowler PW (2011) J Phys Chem A 115:13649–13656CrossRefGoogle Scholar
  75. 75.
    Keith TA, Version 15.09.27 edn., (2015), pp. TK Gristmill Software,(aim.tkgristmill.com)Google Scholar
  76. 76.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  77. 77.
    Glendening ED, Weinhold F (1998) J Comput Chem 19:593–609CrossRefGoogle Scholar
  78. 78.
    Glendening ED, Badenhoop JK, Weinhold F (1998) J Comput Chem 19:628–646CrossRefGoogle Scholar
  79. 79.
    Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842CrossRefGoogle Scholar
  80. 80.
    Szwacki N, Weber V, Tymczak C (2009) Nanoscale Res Lett 4:1085–1089CrossRefGoogle Scholar
  81. 81.
    Krygowski TM (1993) J Chem Inf Comp Sci 33:70–78CrossRefGoogle Scholar
  82. 82.
    Zborowski K, Alkorta I, Elguero J, Proniewicz L (2012) Struct Chem 23:595–600CrossRefGoogle Scholar
  83. 83.
    Mohammadinezhad E, Raissi H, Farzad F (2014) RSC Adv 4:60519–60525CrossRefGoogle Scholar
  84. 84.
    Güell M, Matito E, Luis JM, Poater J, Solà M (2006) J Phys Chem A 110:11569–11574CrossRefGoogle Scholar
  85. 85.
    Feixas F, Matito E, Poater J, Sola M (2015) Chem Soc Rev 44:6434–6451CrossRefGoogle Scholar
  86. 86.
    Stanger A (2006) J Org Chem 71:883–893CrossRefGoogle Scholar
  87. 87.
    Solà M, Feixas F, Jiménez-Halla JOC, Matito E, Poater J (2010) Symmetry 2:1156–1179CrossRefGoogle Scholar
  88. 88.
    von Ragué SP, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Org Lett 3:2465–2468CrossRefGoogle Scholar
  89. 89.
    Baranac-Stojanović M, Koch A, Kleinpeter E (2012) Chem Eur J 18:370–376CrossRefGoogle Scholar
  90. 90.
    Torres JJ, Islas R, Osorio E, Harrison JG, Tiznado W, Merino G (2013) J Phys Chem A 117:5529–5533CrossRefGoogle Scholar
  91. 91.
    Islas R, Martínez-Guajardo G, Jiménez-Halla JOC, Solà M, Merino G (2010) J Chem Theor Comput 6:1131–1135CrossRefGoogle Scholar
  92. 92.
    Sánchez-Sanz G (2015) Tetrahedron 71:826–839CrossRefGoogle Scholar
  93. 93.
    Sanchez-Sanz G, Trujillo C, Rozas I, Alkorta I (2015) Phys Chem Chem Phys 17:14961–14971CrossRefGoogle Scholar
  94. 94.
    Ghiasi R (2008) J Mol Struc THEOCHEM 853:77–81CrossRefGoogle Scholar
  95. 95.
    Kassaee MZ, Ghambarian M, Musavi SM (2008) Heteroat Chem 19:377–388CrossRefGoogle Scholar
  96. 96.
    Tsipis CA (2005) Coord Chem Rev 249:2740–2762CrossRefGoogle Scholar
  97. 97.
    Winkler M, Cakir B, Sander W (2004) J Am Chem Soc 126:6135–6149CrossRefGoogle Scholar
  98. 98.
    Alkorta I, Azofra L, Sánchez-Sanz G, Elguero J (2012) Struct Chem 23:1245–1252CrossRefGoogle Scholar
  99. 99.
    Karadakov PB (2008) J Phys Chem A 112:7303–7309CrossRefGoogle Scholar
  100. 100.
    Karadakov PB (2008) J Phys Chem A 112:12707–12713CrossRefGoogle Scholar
  101. 101.
    Minkin VI, Glukhovtsev MN, By S (1994) Aromaticity and antiaromaticity. Electronic and structural aspects. John Wiley & Sons, New YorkGoogle Scholar
  102. 102.
    Jackman LM (1962) Applications of nuclear magnetic resonance spectroscopy in organic chemistry. Pergamon Press, LondonGoogle Scholar
  103. 103.
    Aita K, Ohmae T, Takase M, Nomura K, Kimura H, Nishinaga T (2013) Org Lett 15:3522–3525CrossRefGoogle Scholar
  104. 104.
    Keith TA (1996) Chem Phys 213:123–132CrossRefGoogle Scholar
  105. 105.
    Keith TA, Bader RFW (1992) Chem Phys Lett 194:1–8CrossRefGoogle Scholar
  106. 106.
    Steiner E, Fowler PW (1996) Int J Quantum Chem 60:609–616CrossRefGoogle Scholar
  107. 107.
    Katritzky AR, Karelson M, Sild S, Krygowski TM, Jug K (1998) J Org Chem 63:5228–5231CrossRefGoogle Scholar
  108. 108.
    Alkorta I, Elguero J (1999) New J Chem 23:951–954CrossRefGoogle Scholar
  109. 109.
    Katritzky AR, Jug K, Oniciu DC (2001) Chem Rev 101:1421–1450CrossRefGoogle Scholar
  110. 110.
    Gershoni-Poranne R, Stanger A (2015) Chem Soc Rev 44:6597–6615CrossRefGoogle Scholar
  111. 111.
    Mazurek A, Dobrowolski JC (2012) J Org Chem 77:2608–2618CrossRefGoogle Scholar
  112. 112.
    Soncini A, Fowler PW (2013) Chem Eur J 19:1740–1746CrossRefGoogle Scholar
  113. 113.
    Reisi-Vanani A, Rezaei AA (2015) J Mol Graph Model 61:85–88CrossRefGoogle Scholar
  114. 114.
    Faust R (1995) Angew Chem Int Ed 34:1429–1432CrossRefGoogle Scholar
  115. 115.
    Perez EM, Martin N (2008) Chem Soc Rev 37:1512–1519CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemistry, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  2. 2.School of ChemistryUniversity College DublinDublin 4Ireland
  3. 3.Instituto de Química Médica, CSICMadridSpain

Personalised recommendations