Structural Chemistry

, Volume 28, Issue 3, pp 697–708 | Cite as

Structural systematics and conformational analyses of an isomer grid of nine tolyl-N-pyridinylcarbamates

  • Pavle Mocilac
  • John F. GallagherEmail author
Original Research


A 3 × 3 isomer grid of nine Methylphenyl-N-pyridinylcarbamates (CxxM) is reported with seven CxxM crystal structures at 294 K (xx = pp, pm, po, mp, op, om, oo; x = para-, meta-, ortho), where Cx = pyridinyl ring (as C5NH4NH-) and xM is representative of –C(=O)OC6H4CH3. All seven carbamate crystal structures aggregate via N–H…N intermolecular interactions with the three CpxM carbamates having C(6) zigzag chains, CmpM with C(5) zigzag chains and three ortho-pyridine CoxM structures as hydrogen-bonded dimers with graph set \(R_{2}^{2}\) (8) and augmented by flanking C–H…O contacts. The CpoM crystal structure crystallises with 0.25 CHCl3 per carbamate molecule and solvent channels aligning along the a-axis direction. Conformational analyses of the nine minimised CxxM structures in gas phase are detailed for comparisons with the solid-state structures and demonstrate similarities between both structural methods. The modelling results also demonstrate the problems associated with pendant ortho-groups sterically clashing in the CmoM and CooM structures and methods to find a reasonable estimate of the CxxM conformational landscape.


Carbamate Channel Crystal structure Conformational analysis Pyridine 



This research was funded by the Programme for Research in Third Level Institutions (PRTLI) Cycle 4 (Ireland) and co-funded through the European Regional Development Fund (ERDF), part of the European Union Structural Funds Programme (ESF) 2007–2013. The Irish Centre for High End Computing (ICHEC) is thanked for support and assistance with the computational calculations (

Supplementary material

11224_2016_851_MOESM1_ESM.doc (3.4 mb)
Supplementary material 1 (DOC 3525 kb)


  1. 1.
    International Programme on Chemical Safety WHO task group on Carbamate Pesticides, Carbamate Pesticides: a general introduction, 1986, Geneva, World Health Organisation. 9241542640 0250-863XGoogle Scholar
  2. 2.
    Mineau P (1991) Cholinesterase-inhibiting insecticides: their impact on wildlife and the environment. In: Conference proceedings, Elsevier, AmsterdamGoogle Scholar
  3. 3.
    O’Donnell S, Mandaro R, Schuster TM, Arnone A (1979) J Biol Chem 254:12204–12208Google Scholar
  4. 4.
    Bubert C, Leese MP, Mahon MF, Ferrandis E, Regis-Lydi S, Kasprzyk PG, Newman SP, Ho YT, Purohit A, Reed MJ, Potter BVL (2007) J Med Chem 50:4431–4443CrossRefGoogle Scholar
  5. 5.
    Hay MP, Wilson WA, Denny WR (2000) Tetrahedron 56:645–657CrossRefGoogle Scholar
  6. 6.
    Hay MP, Wilson WA, Denny WR (2005) Bioorg Med Chem 13:4043–4055CrossRefGoogle Scholar
  7. 7.
    Ray S, Chaturvedi D (2004) Drug Fut 29:343–357CrossRefGoogle Scholar
  8. 8.
    Chaturvedi D (2012) Tetrahedron 68:15–45CrossRefGoogle Scholar
  9. 9.
    Ghosh A, Brindisi M (2015) J Med Chem 58:2895–2940CrossRefGoogle Scholar
  10. 10.
    Allen FH (2002) Acta Crystallogr B 58:380–388CrossRefGoogle Scholar
  11. 11.
    Thomas IR, Bruno IJ, Cole JC, Macrae CF, Pidcock E, Wood PA (2010) J Appl Cryst 43:362–366CrossRefGoogle Scholar
  12. 12.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Crystallogr B 72:171–179CrossRefGoogle Scholar
  13. 13.
    Ghosh K, Adhikari S, Fröhlich R (2006) J Mol Struct 785:63–67CrossRefGoogle Scholar
  14. 14.
    Wilson JM, Giordani F, Farrugia LJ, Barrett MP, Robins DJ, Sutherland A (2007) Org Biomol Chem 5:3651–3656CrossRefGoogle Scholar
  15. 15.
    Xia Y, Li SG, Wu B, Liu YY, Yang XJ (2011) CrystEngComm 13:5763–5772CrossRefGoogle Scholar
  16. 16.
    Mocilac P, Gallagher JF (2013) Cryst Growth Des 13:5295–5304CrossRefGoogle Scholar
  17. 17.
    Mocilac P, Gallagher JF (2015) Acta Crystallogr E71:1366–1370Google Scholar
  18. 18.
    Mocilac P, Tallon M, Lough AJ, Gallagher JF (2010) CrystEngComm 12:3080–3090CrossRefGoogle Scholar
  19. 19.
    Mocilac P, Gallagher JF (2011) CrystEngComm 13:5354–5366CrossRefGoogle Scholar
  20. 20.
    Mocilac P, Donnelly K, Gallagher JF (2012) Acta Crystallogr B 68:189–203CrossRefGoogle Scholar
  21. 21.
    Mocilac P, Lough AJ, Gallagher JF (2011) CrystEngComm 13:1899–1909CrossRefGoogle Scholar
  22. 22.
    Gallagher JF, Alley S, Lough AJ (2016) Inorg Chim Acta 444:113–125CrossRefGoogle Scholar
  23. 23.
    Oxford Diffraction Ltd ABSFAC and CrysAlisPro CCD/RED Version Oxford Diffraction Abingdon Oxon UKGoogle Scholar
  24. 24.
    Sheldrick GM (2008) Acta Crystallogr Sect A64:112–122CrossRefGoogle Scholar
  25. 25.
    McArdle P (1995) J Appl Cryst 28:65CrossRefGoogle Scholar
  26. 26.
    Spek AL (2003) J Appl Cryst 36:7–13CrossRefGoogle Scholar
  27. 27.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GR, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453–457CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 Revision B.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  29. 29.
    Becke AD (1993) J Chem Phys 1993(98):5648–5652CrossRefGoogle Scholar
  30. 30.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  31. 31.
    Curtius T (1894) J Prakt Chem 50:275–294CrossRefGoogle Scholar
  32. 32.
    Shioiri T, Ninomiya K, Yamada S (1972) J Am Chem Soc 94:6203–6205CrossRefGoogle Scholar
  33. 33.
    Scriven EFV, Turnbull K (1988) Chem Rev 88:297–368CrossRefGoogle Scholar
  34. 34.
    Rutar A, Zbontar U, Kikelj D, Leban I (1998) Chirality 10:791–799CrossRefGoogle Scholar
  35. 35.
    Sasse A, Ligneau X, Rouleau A, Elz S, Ganellin CR, Arrang JM, Schwartz JC, Schunack W, Stark H (2002) J Med Chem 45:4000–4010CrossRefGoogle Scholar
  36. 36.
    Mocilac P (2012) Ph.D. thesis Dublin City University, IrelandGoogle Scholar
  37. 37.
    Browne RJC, Browne RFC (2000) J Chem Ed 76:724–731CrossRefGoogle Scholar
  38. 38.
    Slovokhotov YL, Neretin AS, Howard JAK (2004) N J Chem 28:967–979CrossRefGoogle Scholar
  39. 39.
    Voisin E, Foster EJ, Rakatomalala M, Williams VE (2009) Chem Mat 21:3251–3261CrossRefGoogle Scholar
  40. 40.
    Katritzky AR, Kuanar M, Slavov S, Hall CD, Karelson M, Kahn I, Dobchev DA (2010) Chem Rev 110:5714–5789CrossRefGoogle Scholar
  41. 41.
    Deetz MJ, Forbes CC, Jonas M, Malerich JP, Smith BD, Wiest O (2002) J Org Chem 2002(67):3949–3952CrossRefGoogle Scholar
  42. 42.
    Moraczewski AL, Banaszynski LA, From AM, White CE, Smith BD (1988) J Org Chem 63:7258–7262CrossRefGoogle Scholar
  43. 43.
    Smith BD, Goodenough-Lashua DAM, D’Souza CJE, Norton KJ, Schmidt LM, Tung JC (2004) Tetrahedron Lett 45:2747–2749CrossRefGoogle Scholar
  44. 44.
    Yasuda H, Choi JC, Lee SC, Sakakura T (2002) J Organomet Chem 659:133–141CrossRefGoogle Scholar
  45. 45.
    Wang Z, Wang ZW (2009) Acta Crystallogr E65:o1036Google Scholar
  46. 46.
    Bao SX, Fang Z, Wang YL, Wei P (2009) Acta Crystallogr E65:o1606Google Scholar
  47. 47.
    Shahwar D, Tahir MN, Ahmad N, Yasmeen A, Ullah S (2009) Acta Crystallogr E65:o1626Google Scholar
  48. 48.
    Nayak SK, Reddy MK, Chopra D, Guru TNG (2012) CrystEngComm 14:200–212CrossRefGoogle Scholar
  49. 49.
    Mocilac P, Gallagher JF (2016) CrystEngComm 18:2375–2384CrossRefGoogle Scholar
  50. 50.
    Ivanov DM, Novikov AS, Starova GL, Haukka M, Kukushkin VY (2016) A family of heterotetrameric clusters of chloride species and halomethanes held by two halogen and two hydrogen bonds. CrystEngComm 18:5278–5286. doi: 10.1039/c6ce01179a Google Scholar
  51. 51.
    Allen FH, Wood PA, Galek PTA (2013) Acta Crystallogr B 69:379–388CrossRefGoogle Scholar
  52. 52.
    Kasetti Y, Bharatam PV (2012) Theor Chem Acc 131:1160–1171CrossRefGoogle Scholar
  53. 53.
    Silva D, Norberto F, Santos S, Hervés P (2015) Reaction kinetics. Mech Catal 115:421–430Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemical SciencesDublin City UniversityDublin 9Ireland
  2. 2.Faculté des Sciences et TechnologiesUniversité de LorraineVandoeuvre-dès-NancyFrance

Personalised recommendations