Advertisement

Structural Chemistry

, Volume 27, Issue 5, pp 1531–1542 | Cite as

A computational study of azaphospholes: anions and neutral tautomers

  • Ibon Alkorta
  • José Elguero
Original Research

Abstract

One hundred and eleven azaphospholes (31 anions and 80 neutral compounds) have been studied theoretically at the B3LYP/6-311++G(d,p) level. Among the analyzed properties, there are the geometries, mainly the non-planarity of the PH tautomers, the isomerism of the anions, the NH/PH tautomerism of neutral compounds, the chemical shifts and spin–spin coupling constants. The aromaticity has been assessed through Schleyer’s NICS values, preferably NICS(1). Finally, we have compared our calculations with previous ones as well as with the available experimental data for the calculated compounds and for related ones.

Keywords

Azaphospholes Aromaticity GIAO NICS Tautomerism Empirical models 

Notes

Acknowledgments

This work has been supported by the Spanish Ministerio de Economía y Competitividad (CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (S2013/MIT-2841, Fotocarbon). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged.

Supplementary material

11224_2016_780_MOESM1_ESM.doc (796 kb)
Supplementary material 1 (DOC 796 kb)

References

  1. 1.
    Katritzky AR, Lagowski JM (1967) The principles of heterocyclic chemistry. Methuen & Co Ltd, LondonGoogle Scholar
  2. 2.
    Katritzky AR, Pozharskii AF (2000) Handbook of heterocyclic chemistry. Elsevier Science, AmsterdamGoogle Scholar
  3. 3.
    Schofield K, Grimmett MR, Keene BRT (1976) The azoles. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Katritzky AR, Rees CW (eds) (1984) Comprehensive heterocyclic chemistry. Pergamon Press, OxfordGoogle Scholar
  5. 5.
    Katritzky AR, Rees CW, Scriven EFV (eds) (1996) Comprehensive heterocyclic chemistry II. Elsevier Science, OxfordGoogle Scholar
  6. 6.
    Detty MR, O’Regan MB (1994) Tellurium-containing heterocycles. Wiley, New YorkGoogle Scholar
  7. 7.
    Logan ME, Lang MA, Detty MR (2013) Selenium and tellurium heterocycles, Patai’s chemistry of functional groups. Wiley, New YorkGoogle Scholar
  8. 8.
    Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J (2016) Struct Chem 27:101–109CrossRefGoogle Scholar
  9. 9.
    Becke AD (1993) J Chem Phys 98:5648–5653CrossRefGoogle Scholar
  10. 10.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655CrossRefGoogle Scholar
  11. 11.
    Gaussian 09 (2009), Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr., JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CTGoogle Scholar
  12. 12.
    Schleyer PR, Marker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  13. 13.
    Corminboeuf C, Heine T, Seifert G, Schleyer PR (2004) Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
  14. 14.
    Alkorta I, Rozas I, Elguero J (2001) Tetrahedron 57:6043–6049CrossRefGoogle Scholar
  15. 15.
    London F (1937) J Phys Radium 8:397–409CrossRefGoogle Scholar
  16. 16.
    Ditchfield R (1974) Mol Phys 27:789–807CrossRefGoogle Scholar
  17. 17.
    Silva AMS, Sousa RMS, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008) Magn Reson Chem 46:859–864CrossRefGoogle Scholar
  18. 18.
    Blanco F, Alkorta I, Elguero J (2007) Magn Reson Chem 45:797–800CrossRefGoogle Scholar
  19. 19.
    Alkorta I, Blanco F, Elguero J (2010) Theochem 942:1–6CrossRefGoogle Scholar
  20. 20.
    Gianola AJ, Ichino T, Hoenigman RL, Kato S, Bierbaum VM, Lineberger WC (2004) J Phys Chem A 108:10326–10335CrossRefGoogle Scholar
  21. 21.
    Alkorta I, Blanco F, Elguero J (2008) J Phys Chem A 112:1817–1822CrossRefGoogle Scholar
  22. 22.
    Joshi SM, de Cózar A, Gómez-Vallejo V, Koziorowski J, Llop J, Cossío FP (2015) Chem Commun 51:8954–8957CrossRefGoogle Scholar
  23. 23.
    Taft RW, Anvia F, Taagepera M, Catalán J, Elguero J (1986) J Am Chem Soc 108:3237–3239CrossRefGoogle Scholar
  24. 24.
    Tomás F, Abboud JLM, Laynez J, Notario R, Santos L, Nilsson SO, Catalán J, Claramunt RM, Elguero J (1989) J Am Chem Soc 111:7348–7353CrossRefGoogle Scholar
  25. 25.
    Catalán J, Sánchez-Cabezudo M, de Paz JLG, Elguero J, Taft RW, Anvia F (1989) J Comput Chem 10:426–433CrossRefGoogle Scholar
  26. 26.
    Tomás F, Catalán J, Pérez P, Elguero J (1994) J Org Chem 59:2799–2802CrossRefGoogle Scholar
  27. 27.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  28. 28.
    Claramunt RM, Alkorta I, Elguero J (2013) Comput Theor Chem 1019:108–115CrossRefGoogle Scholar
  29. 29.
    Bird CW (1985) Tetrahedron 41:1409–1414CrossRefGoogle Scholar
  30. 30.
    Veszprémi T, Nyulászi L, Réffy J, Heinicke J (1992) J Phys Chem 96:623–626CrossRefGoogle Scholar
  31. 31.
    Bachrach SM, Perriott L (1994) J Org Chem 59:3394–3397CrossRefGoogle Scholar
  32. 32.
    Sunderlin LS, Panu D, Puranik DB, Ashe AJ, Squires RR (1994) Organometallics 13:4732–4740CrossRefGoogle Scholar
  33. 33.
    Nyulászi L (1995) J Phys Chem 99:586–591CrossRefGoogle Scholar
  34. 34.
    Glukhovtsev MN, Dransfeld A (1996) Schleyer PvR. J Phys Chem 100:13447–13454CrossRefGoogle Scholar
  35. 35.
    Krygowski TM, Cyranski M (1996) Tetrahedron 52:10255–10264CrossRefGoogle Scholar
  36. 36.
    Delaere D, Dransfeld A, Nguyen MT, Vanquickenborne LG (2000) J Org Chem 65:2631–2636CrossRefGoogle Scholar
  37. 37.
    Nyulászi L (2000) Tetrahedron 56:79–84CrossRefGoogle Scholar
  38. 38.
    Nyulászi L (2001) Chem Rev 101:1229–1246CrossRefGoogle Scholar
  39. 39.
    Rocha WR, Duarte LWM, De Alneida WB, Caliman V (2002) J Braz Chem Soc 13:597–605CrossRefGoogle Scholar
  40. 40.
    Pelzer S, Wichmann K, Wesendrup R, Schwerdtfeger P (2002) J Phys Chem A 106:6387–6394CrossRefGoogle Scholar
  41. 41.
    Mathey F (2003) Angew Chem Int Ed 42:1578–1604CrossRefGoogle Scholar
  42. 42.
    Alonso M, Herradón B (2010) J Comput Chem 31:917–928Google Scholar
  43. 43.
    Coggon P, McPhail AT (1973) J Chem Soc Dalton 1888–1891Google Scholar
  44. 44.
    Heinicke JW (2016) Eur J Inorg Chem 575–594Google Scholar
  45. 45.
    Wan L, Alkorta I, Elguero J, Sun J, Zheng W (2007) Tetrahedron 63:9129–9133CrossRefGoogle Scholar
  46. 46.
    Gupta R, Bansal RK (2016) Comput Theor Chem 1076:1–10CrossRefGoogle Scholar
  47. 47.
    Jin Y, Perera A, Bartlett RJ (2015) Chem Phys Lett 640:68–71CrossRefGoogle Scholar
  48. 48.
    Velian A, Cummins CC (2015) Science 348:1001–1004CrossRefGoogle Scholar
  49. 49.
    Allen FD (2002) Acta Crystallogr Sect B 58:380–388CrossRefGoogle Scholar
  50. 50.
    Polborn K, Schmidpeter A, Märkl G, Willhalm A (1999) Z Naturforsch 54B:187–192Google Scholar
  51. 51.
    Foces-Foces C, Alkorta I, Elguero J (2000) Acta Crystallogr Sect B 56:1018–1028CrossRefGoogle Scholar
  52. 52.
    Charrier C, Mathey F (1987) Tetrahedron Lett 28:5025–5028CrossRefGoogle Scholar
  53. 53.
    Heinicke J (1986) Tetrahedron Lett 27:5699–5702CrossRefGoogle Scholar
  54. 54.
    Claramunt RM, López C, Schmidpter A, Willhalm A, Elguero J, Alkorta I (2001) Spectroscopy 15:27–32CrossRefGoogle Scholar
  55. 55.
    Caliman V, Hitchcock PB, Nixon JF (1995) J Chem Soc Chem Commun 1661–1662Google Scholar
  56. 56.
    Bundgaard T, Jakobsen HJ (1972) Tetrahedron Lett 32:3353–3356CrossRefGoogle Scholar
  57. 57.
    Koyanagi Y, Kimura Y, Matano Y (2016) Dalton Trans 45:2190–2200CrossRefGoogle Scholar
  58. 58.
    Bansal RK, Karaghiosoff K, Schmidpeter A (1994) Tetrahedron 50:7675–7745CrossRefGoogle Scholar
  59. 59.
    Heinicke J, Tzschach A (1982) Tetrahedron Lett 23:3643–3646CrossRefGoogle Scholar
  60. 60.
    Negrebetskii VV, Bogel’fer LY, Bobkova RG, Ignatova NP, Shvetsov-Shilovskii NI (1976) Zh Struktur Khim 19:64–68Google Scholar
  61. 61.
    Kraaijkamp JG, Koten GV, Vrieze K, Grove DM, Klop EA, Spek AL, Schmidpeter A (1983) J Organomet Chem 256:375–389CrossRefGoogle Scholar
  62. 62.
    Vasil’ev AF, Vilkov LV, Ignatova NP, Mel’nikov NN, Negrebeckij VV, Svecov-Silovskij NI, Chajkin LS (1972) J Prack Chem 314:806–814CrossRefGoogle Scholar
  63. 63.
    Charbonnel Y, Barrans J (1976) Tetrahedron 32:2039–2041CrossRefGoogle Scholar
  64. 64.
    Schmidpeter A, Luber J, Tautz H (1977) Angew Chem Int Ed Engl 16:546–547CrossRefGoogle Scholar
  65. 65.
    Dash KC, Schmidbaur H, Schmidpeter A (1980) Inorg Chim Acta 46:167–170CrossRefGoogle Scholar
  66. 66.
    Weinmaier JH, Tautz H, Schmidpeter A (1980) J Organomet Chem 185:53–68CrossRefGoogle Scholar
  67. 67.
    Schmidpeter A, Tautz H, Seyerl JV, Huttner G (1981) Angew Chem Int Ed 20:408–409CrossRefGoogle Scholar
  68. 68.
    Kraaijkamp JG, Grove DM, Koten GV, Schmidpeter A (1988) Inorg Chem 27:2612–2617CrossRefGoogle Scholar
  69. 69.
    Herler S, Mayer P, Schmedt auf der Günne J, Schulz A, Villinger A, Weigand JJ (2005) Angew Chem Int Ed 44:7790–7793CrossRefGoogle Scholar
  70. 70.
    Schulz A, Villinger A (2009) Struct Chem 20:59–62CrossRefGoogle Scholar
  71. 71.
    Heindl C, Peresypkina EV, Virovets AV, Balász G, Scheer M (2016) Chem Eur J 22:1944–1948CrossRefGoogle Scholar
  72. 72.
    Cloke FGN, Hitchcock PB, Hunnable P, Nixon JF, Nyulászi L, Niecke E, Thelen V (1998) Angew Chem Int Ed 37:1083–1086CrossRefGoogle Scholar
  73. 73.
    Hahn FE, Wittenbecher L, Van DL, Fröhlich R, Wibbeling B (2000) Angew Chem Int Ed 39:2307–2310CrossRefGoogle Scholar
  74. 74.
    Ionkin AS, Marshall WJ, Fish BM, Marchione AA, Howe LA, Davidson F, McEwen CN (2008) Eur J Inorg Chem 2386–2390Google Scholar
  75. 75.
    Scheer M, Dend S, Scherer OJ, Sierka M (2005) Angew Chem Int Ed 44:3755–3758CrossRefGoogle Scholar
  76. 76.
    Scherer OJ, Brück T, Wolmershäuser G (1988) Chem Ber 121:935–938CrossRefGoogle Scholar
  77. 77.
    Carmichael D, Ricard L, Mathey F (1994) J Chem Soc Chem Commun 1167–1168Google Scholar
  78. 78.
    Rösch W, Facklam T, Regitz M (1987) Tetrahedron 43:3247–3256CrossRefGoogle Scholar
  79. 79.
    Sklorz JAW, Müller C (2016) Eur J Inorg Chem 595–606Google Scholar
  80. 80.
    Ionkin AS, Marshall WJ, Fish BM, Marchione AA, Howe LA, Davidson F, McEwen CN (2008) Organometallics 27:5118–5121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de Química Médica (CSIC)MadridSpain

Personalised recommendations