Advertisement

Structural Chemistry

, Volume 27, Issue 1, pp 231–242 | Cite as

Structure of hydrogen tetroxide in gas phase and in aqueous environments: relationship to the hydroperoxyl radical self-reaction

  • M. T. C. Martins-Costa
  • J. M. Anglada
  • M. F. Ruiz-LópezEmail author
Original Research

Abstract

Hydrogen polyoxides are important species in atmospheric chemistry, advanced oxidation processes for wastewater treatment, and biological processes, among other fields. However, the electronic structure and chemical properties of the largest synthesized members of this chemical family remain poorly understood. In the present work, we have carried out a detailed theoretical study of hydrogen tetroxide (HO4H), which is a reaction intermediate of the hydroperoxyl radical (HO2) self-reaction. We have considered the molecule in gas phase, in microhydrated environments, in bulk water solution, and at the air–water interface. Very high level ab initio calculations have been carried out to describe the isolated molecule and the water complexes. Combined QM/MM molecular dynamics simulations have been performed to describe the system in liquid water and at the water surface. We show that the interactions with water strongly stabilize the tetraoxide adduct with respect to the (HO2)2 dimer. The chemical process leading to hydrogen tetroxide from two separated hydroperoxyl radicals is predicted to be an exothermic and exergonic reaction at 298 K in all the studied media, with the reaction free energy being slightly smaller (in absolute value) in the condensed phase with respect to the gas phase. An estimation of the pKa of hydrogen tetroxide has been reported (7.3), which suggests that this species is less acidic than previously thought.

Keywords

Hydrogen polyoxides Hydrogen tetroxide Hydroperoxyl radical Atmospheric chemistry Air–water interface Hydrogen-bonded complexes 

Notes

Acknowledgments

JMA thanks the Spanish Secretaria de Estado de Investigación, Desarrollo e Innovación (CTQ2014-59768-P), and the Generalitat de Catalunya (Grant 2014SGR139) for financial support and the Consorci de Serveis Universitaris de Catalunya (CSUC) for providing computational resources. MTCMC and MFRL acknowledge the French CINES for providing computing time (Project Code lct2550).

Supplementary material

11224_2015_717_MOESM1_ESM.pdf (295 kb)
Supplementary material 1 (PDF 295 kb)

References

  1. 1.
    Levanov AV, Isaykina OY, Antipenko EE, Lunin VV (2015) Chem Phys 447:10–14CrossRefGoogle Scholar
  2. 2.
    Denis PA, Huelmo CP (2014) Mol Phys 112:3047–3056CrossRefGoogle Scholar
  3. 3.
    Levanov AV, Isaikina OY, Antipenko EE, Lunin VV (2014) Russ J Phys Chem A 88:1488–1492CrossRefGoogle Scholar
  4. 4.
    Levanov AV, Isaykina OY, Antipenko EE, Lunin VV (2014) J Phys Chem A 118:62–69CrossRefGoogle Scholar
  5. 5.
    Denis PA (2013) Int J Quantum Chem 113:2206–2212CrossRefGoogle Scholar
  6. 6.
    Seo H-I, Bahng J-A, Kim Y-C, Kim S-J (2012) Bull Korean Chem Soc 33:3017–3024CrossRefGoogle Scholar
  7. 7.
    Levanov AV, Sakharov DV, Dashkova AV, Antipenko EE, Lunin VV (2011) Eur J Inorg Chem 2011(33):5144–5150CrossRefGoogle Scholar
  8. 8.
    Martins-Costa M, Anglada JM, Ruiz-Lopez MF (2011) Int J Quantum Chem 111:1543–1554CrossRefGoogle Scholar
  9. 9.
    Martins-Costa M, Anglada JM, Ruiz-Lopez MF (2009) Chem Phys Lett 481:180–182CrossRefGoogle Scholar
  10. 10.
    Denis PA, Ornellas FR (2009) J Phys Chem A 113:499–506CrossRefGoogle Scholar
  11. 11.
    Kovacic S, Koller J, Cerkovnik J, Tuttle T, Plesnicar B (2008) J Phys Chem A 112:8129–8135CrossRefGoogle Scholar
  12. 12.
    Plesnicar B (2005) Acta Chim Slov 52:1–12Google Scholar
  13. 13.
    Cerkovnik J, Erzen E, Koller J, Plesnicar B (2002) J Am Chem Soc 124:404–409CrossRefGoogle Scholar
  14. 14.
    McKay DJ, Wright JS (1998) J Am Chem Soc 120:1003–1013CrossRefGoogle Scholar
  15. 15.
    Khursan SL, Shereshovets VV (1996) Russ Chem Bull 45:1286–1291CrossRefGoogle Scholar
  16. 16.
    Cerkovnik J, Plesnicar B (1993) J Am Chem Soc 115:12169–12170CrossRefGoogle Scholar
  17. 17.
    Arnau JL, Giguere PA (1974) J Chem Phys 60:270–273CrossRefGoogle Scholar
  18. 18.
    Plesnicar B, Kaiser S, Azman A (1973) J Am Chem Soc 95:5476–5477CrossRefGoogle Scholar
  19. 19.
    Benson SW (1960) J Chem Phys 33:306–307CrossRefGoogle Scholar
  20. 20.
    Anglada JM, Martins-Costa M, Francisco JS, Ruiz-Lopez MF (2015) Acc Chem Res 48:575–583CrossRefGoogle Scholar
  21. 21.
    Anglada JM, Olivella S, Solé A (2007) J Phys Chem A 111:1695–1704CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Zhang T, Wang W (2011) Int J Quantum Chem 111:3029–3039CrossRefGoogle Scholar
  23. 23.
    Zhu RS, Lin MC (2001) PhysChemComm 4:106–111CrossRefGoogle Scholar
  24. 24.
    Zhou DDY, Han K, Zhang P, Harding LB, Davis MJ, Skodje RT (2012) J Phys Chem A 116:2089–2100CrossRefGoogle Scholar
  25. 25.
    Christensen LE, Okumura M, Sander SP, Salawitch RJ, Toon GC, Sen B, Blavier JF, Jucks KW (2002) Geophys Res Lett 29:13-1–13-4CrossRefGoogle Scholar
  26. 26.
    Stockwell WR (1995) J Geophys Res D 100:11695–11698CrossRefGoogle Scholar
  27. 27.
    Hippler H, Troe J, Willner J (1990) J Chem Phys 93:1755–1760CrossRefGoogle Scholar
  28. 28.
    Lightfoot PD, Veyret B, Lesclaux R (1988) Chem Phys Lett 150:120–126CrossRefGoogle Scholar
  29. 29.
    Takacs GA, Howard CJ (1986) J Phys Chem 90:687–690CrossRefGoogle Scholar
  30. 30.
    Patrick R, Barker JR, Golden DM (1984) J Phys Chem 88:128–136CrossRefGoogle Scholar
  31. 31.
    Takacs GA, Howard CJ (1984) J Phys Chem 88:2110–2116CrossRefGoogle Scholar
  32. 32.
    Sander SP (1984) J Phys Chem 88:6018–6021CrossRefGoogle Scholar
  33. 33.
    Patrick R, Pilling MJ (1982) Chem Phys Lett 91:343–347CrossRefGoogle Scholar
  34. 34.
    Sander SP, Peterson M, Watson RT, Patrick R (1982) J Phys Chem 86:1236–1240CrossRefGoogle Scholar
  35. 35.
    Simonaitis R, Heicklen J (1982) J Phys Chem 86:3416–3418CrossRefGoogle Scholar
  36. 36.
    Merenyi G, Lind J, Naumov S, von Sonntag C (2010) Chem Eur J 16:1372–1377CrossRefGoogle Scholar
  37. 37.
    Anglada JM, Torrent-Sucarrat M, Ruiz-Lopez MF, Martins-Costa M (2012) Chem Eur J 18:13435–13445CrossRefGoogle Scholar
  38. 38.
    Aloisio S, Francisco JS (2000) J Phys Chem A 104:6597CrossRefGoogle Scholar
  39. 39.
    Kanno N, Tonokura K, Tezaki A, Koshi M (2005) J Phys Chem A 109:3153–3158CrossRefGoogle Scholar
  40. 40.
    Aloisio S, Francisco JS (1998) J Phys Chem A 102:1899–1902CrossRefGoogle Scholar
  41. 41.
    Lendvay G (2001) Z Phys Chem 215:377–392CrossRefGoogle Scholar
  42. 42.
    Zhu RS, Lin MC (2002) Chem Phys Lett 354:217–226CrossRefGoogle Scholar
  43. 43.
    Zhu RS, Lin MC (2003) PhysChemComm 6:51–54CrossRefGoogle Scholar
  44. 44.
    Vácha R, Slavíček P, Mucha M, Finlayson-Pitts BJ, Jungwirth P (2004) J Phys Chem A 108:11573–11579CrossRefGoogle Scholar
  45. 45.
    Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-Lopez M (2012) Angew Chem Int Edit 51:5413–5417CrossRefGoogle Scholar
  46. 46.
    Anglada JM, Martins-Costa M, Ruiz-Lopez MF, Francisco JS (2014) Proc Natl Acad Sci USA 111:11618–11623CrossRefGoogle Scholar
  47. 47.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  48. 48.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  49. 49.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 86–87Google Scholar
  50. 50.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  51. 51.
    Pople JA, Krishnan R, Schlegel B, Binkley JS (1978) Int J Quantum Chem 14:545–560CrossRefGoogle Scholar
  52. 52.
    Cizek J (1969) Adv Chem Phys 14:35Google Scholar
  53. 53.
    Barlett RJ (1989) J Phys Chem 93:1963CrossRefGoogle Scholar
  54. 54.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479CrossRefGoogle Scholar
  55. 55.
    Dunning THJ (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  56. 56.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  57. 57.
    Bak KL, Gauss J, Jorgensen P, Olsen J, Helgaker T, Stanton JF (2001) J Chem Phys 114:6548–6556CrossRefGoogle Scholar
  58. 58.
    Graefenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360–394CrossRefGoogle Scholar
  59. 59.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp 23:199Google Scholar
  60. 60.
    Rienstra-Kiracofe JC, Allen WD, Schaefer HF III (2000) J Phys Chem A 104:9823–9840CrossRefGoogle Scholar
  61. 61.
    Jorgensen WL, Chandrashekar J, Madura JD, Impey WR, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  62. 62.
    Luque FJ, Reuter N, Cartier A, Ruiz-López MF (2000) J Phys Chem A 104:10923CrossRefGoogle Scholar
  63. 63.
    Torrie GM, Valleau JP (1977) J Comput Phys 23:187CrossRefGoogle Scholar
  64. 64.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13:1011CrossRefGoogle Scholar
  65. 65.
    Roux B (1995) Comput Phys Commun 91:275CrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  67. 67.
    Ponder JW (2004) TINKER: software tools for molecular design. Washington University School of Medicine, Saint LouisGoogle Scholar
  68. 68.
    Martins-Costa MTC (2014) A Gaussian 09/Tinker 4.2 interface for hybrid QM/MM applications. University of Lorraine—CNRS, NancyGoogle Scholar
  69. 69.
    Wu A, Cremer D, Gauss J (2003) J Phys Chem A 107:8737CrossRefGoogle Scholar
  70. 70.
    Martins-Costa M, Anglada JM, Ruiz-López MF (2009) Chem Phys Lett 481:180CrossRefGoogle Scholar
  71. 71.
    Zhang TL, Wang WL, Zhang P, Lu J, Zhang Y (2011) Phys Chem Chem Phys 13:20794–20805CrossRefGoogle Scholar
  72. 72.
    Chalmet S, Ruiz-López MF (2006) J Chem Phys 124:194502CrossRefGoogle Scholar
  73. 73.
    Bielski BH, Schwarz HA (1968) J Phys Chem 72:3836–3841CrossRefGoogle Scholar
  74. 74.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787–7794CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. T. C. Martins-Costa
    • 1
    • 2
  • J. M. Anglada
    • 3
  • M. F. Ruiz-López
    • 1
    • 2
    Email author
  1. 1.SRSMC, UMR 7565University of LorraineVandoeuvre-lès-NancyFrance
  2. 2.SRSMC, UMR 7565CNRSVandoeuvre-lès-NancyFrance
  3. 3.Departament de Química Biològica i Modelització MolecularIQAC – CSICBarcelonaSpain

Personalised recommendations