Structural Chemistry

, Volume 26, Issue 5–6, pp 1377–1387 | Cite as

Structural characterization of dinuclear gold(I) diphosphine complexes with anion-triggered luminescence

  • Péter Baranyai
  • Gábor Marsi
  • Andrea Hamza
  • Csaba Jobbágy
  • Andrea Deák
Original Research

Abstract

Dinuclear and mononuclear gold(I) complexes containing the xantphos ligand (xantphos = 9,9′-dimethyl-4,5-bis(diphenylphosphino)-xanthene), [Au2(xantphos)2](X)2 with X = BF4 (1), PF6 (2) and SbF6 (3 and 4) and Au(xantphos)(SCN) (5), were characterized by X-ray structural analysis. Two type of colourless crystals (3 and 4) crystallized together from the same solution of [Au2(xantphos)2](SbF6)2. The [Au2(xantphos)2]2+ cations have almost the same molecular structure with two xantphos ligands coordinated to two gold(I) centres with short aurophilic interaction of 2.803 (1), 2.825 (2), 2.817 (3) and 2.837 Å (4), respectively. The [Au2(xantphos)2]2+ cation is in a somewhat distorted figure-eight conformation in 13, whereas in 4, it has and ideal figure-eight conformation with a twofold axis passing through the Au···Au bond. The molecular packing is primarily governed by C–H···F hydrogen bonding interactions between the [Au2(xantphos)2]2+ cations and fluorinated BF4 , PF6 and SbF6 anions. In 5, the gold(I) centre is in a trigonal-planar geometry, and it is coordinated to two phosphorous atom of the xantphos ligand and one sulphur atom of the SCN anion. Different anions cause some conformational changes and alter the molecular packing of these crystalline structures. These variations in the solid-state structures alter the luminescent properties of the dinuclear and mononuclear gold(I) xantphos complexes. Dinuclear complexes 1, 2 and 4 exhibit intense yellow luminescence, while compound 3 and mononuclear 5 produces green emission when irradiated with a 365-nm UV lamp at room temperature.

Keywords

Aurophilicity Gold Solid-state photoluminescence DFT calculation 

Notes

Acknowledgments

The authors gratefully acknowledge the support by MTA (Hungarian Academy of Sciences) through the Lendület Programme (LP2012-21/2012).

Supplementary material

11224_2015_674_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 53 kb)

References

  1. 1.
    Laguna A (2008) modern supramolecular gold chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Gimeno MC, Laguna A (1997) Chem Rev 3:511CrossRefGoogle Scholar
  3. 3.
    Schmidbaur H, Schier A (2008) Chem Soc Rev 37:1931CrossRefGoogle Scholar
  4. 4.
    Schmidbaur H, Schier A (2012) Chem Soc Rev 41:370CrossRefGoogle Scholar
  5. 5.
    Hargittai M (2009) Acc Chem Res 42:453CrossRefGoogle Scholar
  6. 6.
    Schulz A, Hargittai M (2001) Chem Eur J 17:3657CrossRefGoogle Scholar
  7. 7.
    Pyykkö P, Runeberg N, Mendizabal F (1997) Chem Eur J 3:1451CrossRefGoogle Scholar
  8. 8.
    Pyykkö P, Runeberg N, Mendizabal F (1997) Chem Eur J 3:1458CrossRefGoogle Scholar
  9. 9.
    Schmidbaur H, Graf W, Müller G (1988) Angew Chem Int Ed Engl 27:417CrossRefGoogle Scholar
  10. 10.
    Balch AL, Fung EY, Olmstead MM (1999) J Am Chem Soc 112:5181CrossRefGoogle Scholar
  11. 11.
    White-Morris RL, Olmstead MM, Jiang F, Tinti DS, Balch AL (2002) J Am Chem Soc 124:2327CrossRefGoogle Scholar
  12. 12.
    Malwitz MA, Lim SH, White-Morris RL, Pham DM, Olmstead MM, Balch AL (2012) J Am Chem Soc 134:10885CrossRefGoogle Scholar
  13. 13.
    Jiang XF, Hau FKW, Sun QF, Yu SY, Yam VWW (2014) J Am Chem Soc 136:10921CrossRefGoogle Scholar
  14. 14.
    Jobbágy Cs, Deák A (2014) Eur J Inorg Chem 4434–4449Google Scholar
  15. 15.
    Balch AL (2009) Angew Chem Int Ed 48:2641CrossRefGoogle Scholar
  16. 16.
    Gussenhoven EM, Fettinger JC, Pham DM, Malwitz MM, Balch AL (2005) J Am Chem Soc 127:10838CrossRefGoogle Scholar
  17. 17.
    Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) J Am Chem Soc 130:10044CrossRefGoogle Scholar
  18. 18.
    Osawa M, Kawata I, Igawa S, Hoshino M, Fukunaga T, Hashizume D (2010) Chem Eur J 16:12114CrossRefGoogle Scholar
  19. 19.
    Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Nat Commun 4:2009Google Scholar
  20. 20.
    Seki T, Sakurada K, Ito H (2013) Angew Chem Int Ed 52:12828CrossRefGoogle Scholar
  21. 21.
    Jobbágy Cs, Molnár M, Baranyai P, Hamza A, Pálinkás G, Deák A (2014) Cryst Eng Commun 16:3192CrossRefGoogle Scholar
  22. 22.
    Jobbágy Cs, Molnár M, Baranyai P, Deák A (2014) Dalton Trans 43:11807CrossRefGoogle Scholar
  23. 23.
    Deák A, Jobbágy Cs, Marsi G, Molnár M, Szakács Z, Baranyai P (2015) Chem Eur J 21:11495CrossRefGoogle Scholar
  24. 24.
    Hargittai M, Hargittai I (2009) Symmetry through the eyes of a chemist. 3rd ed. Springer Science + Business Media B.V. p. 1Google Scholar
  25. 25.
    Farrugia LJ (2012) J Appl Cryst 45:849CrossRefGoogle Scholar
  26. 26.
    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli MJ (1994) Appl Cryst 27:435Google Scholar
  27. 27.
    Sheldrick GM (2014) SHELXL, version 2014/7, Program for crystal structure refinement. University of Göttingen, GöttingenGoogle Scholar
  28. 28.
    Spek AL (2009) Acta Cryst D65:148Google Scholar
  29. 29.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01, Gaussian, Inc., WallingfordGoogle Scholar
  31. 31.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  32. 32.
    Lim SH, Olmstead MM, Balch AL (2011) J Am Chem Soc 133:10229CrossRefGoogle Scholar
  33. 33.
    Lim SH, Olmstead MM, Balch AL (2013) Chem Sci 4:311CrossRefGoogle Scholar
  34. 34.
    Dunitz JD (1991) In: Host-guest molecular interactions: from chemistry to biology. Chadwick DJ, Widdows K (eds), Wiley, Chichester, p 92Google Scholar
  35. 35.
    Karle IL, Ranganathan D, Haridas V (1996) J Am Chem Soc 118:10916CrossRefGoogle Scholar
  36. 36.
    Werner A, Michels M, Zander L, Lex J, Vogel E (1999) Angew Chem Int Ed 38:3650CrossRefGoogle Scholar
  37. 37.
    Tunyogi T, Deák A, Tárkányi G, Király P, Pálinkás G (2008) Inorg Chem 47:2049CrossRefGoogle Scholar
  38. 38.
    Pintado-Alba A, de la Riva H, Nieuwhuyzen M, Bautista D, Raithby PR, Sparkes HA, Teat SJ, López-de-Luzuriaga JM, Lagunas MC (2004) Dalton Trans 3459–3467Google Scholar
  39. 39.
    Deák A, Megyes T, Tárkányi G, Király P, Biczók L, Pálinkás G, Stang PJ (2006) J Am Chem Soc 128:12668CrossRefGoogle Scholar
  40. 40.
    Fernández EJ, Laguna A, López-de-Lazuriaga JM, Monge M, Montiel M, Olmos ME, Rodríguez-Castillo M (2009) Dalton Trans 7509–7518Google Scholar
  41. 41.
    Bergmann L, Friedrichs J, Mydlak M, Baumann T, Nieger M, Bräse S (2013) Chem Commun 49:6501CrossRefGoogle Scholar
  42. 42.
    Osawa M, Kawata I, Ishii R, Igawa S, Hashimoto M, Hoshino M (2013) J Mater Chem C 1:4375CrossRefGoogle Scholar
  43. 43.
    Mayer I (1983) Chem Phys Lett 97:270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Péter Baranyai
    • 1
  • Gábor Marsi
    • 1
  • Andrea Hamza
    • 2
  • Csaba Jobbágy
    • 1
  • Andrea Deák
    • 1
  1. 1.MTA TTK SZKI, “Lendület” Supramolecular Chemistry Research GroupHungarian Academy of SciencesBudapestHungary
  2. 2.MTA TTK SZKI, Theoretical Chemistry Research GroupHungarian Academy of SciencesBudapestHungary

Personalised recommendations