Structural Chemistry

, Volume 27, Issue 1, pp 249–259 | Cite as

How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

  • Francesc Turias
  • Jordi Poater
  • Remi ChauvinEmail author
  • Albert PoaterEmail author
Original Research


The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host–guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers.


Carbo-benzene DFT calculations Host–guest interaction Inclusion complex Ion carrier Potassium 



A.P. thanks the Spanish MINECO for a project CTQ2014-59832-JIN and European Commission for a Career Integration Grant (CIG09-GA-2011-293900). J.P. thanks the Netherlands Organization for Scientific Research (NWO) for financial support. The Centre National de la Recherche Scientifique (CNRS) is also acknowledged by R.C. for half a teaching sabbatical in 2014–2015. We thank the referee review that has generated an improved manuscript.

Supplementary material

11224_2015_672_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1131 kb)


  1. 1.
    Ouyang M, Huang JL, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025CrossRefGoogle Scholar
  2. 2.
    Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800CrossRefGoogle Scholar
  3. 3.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  4. 4.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  5. 5.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  6. 6.
    Malko D, Neiss C, Vines F, Gorling A (2012) Competition for graphene: graphynes with direction-dependent dirac cones. Phys Rev Lett 108:086804CrossRefGoogle Scholar
  7. 7.
    Chauvin R (1995) Carbomers. I. A general concept of expanded molecules. Tetrahedron Lett 36:397–400CrossRefGoogle Scholar
  8. 8.
    Chauvin R (1995) Carbomers. II. En-route to [C, C]6 carbo-benzene. Tetrahedron Lett 36:401–404CrossRefGoogle Scholar
  9. 9.
    Ducéré JM, Lepetit C, Chauvin R (2013) Carbo-graphite: structural, mechanical and electronic properties. J Phys Chem C 117:21671–21681CrossRefGoogle Scholar
  10. 10.
    Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699CrossRefGoogle Scholar
  11. 11.
    Enyashin AN, Sofronov AA, Makurin YN, Ivanovskii AL (2004) Structural and electronic properties of new alpha-graphyne-based carbon fullerenes. Theochem J Mol Struct 684:29–33CrossRefGoogle Scholar
  12. 12.
    Coluci VR, Braga SF, Legoas SB, Galvao DS, Baughman RH (2003) Families of carbon nanotubes: graphyne-based nanotubes. Phys Rev B 68:035430CrossRefGoogle Scholar
  13. 13.
    Lepetit C, Zou C, Chauvin R (2006) Total carbo-mer of benzene, its carbo-trannulene form, and the zigzag nanotube thereof. J Org Chem 71:6317–6324CrossRefGoogle Scholar
  14. 14.
    Liu W, Li YX, Huang YH (2011) A computational prediction of total carbo-merization on single-walled carbon nanotubes. J Phys Chem Solids 72:299–306CrossRefGoogle Scholar
  15. 15.
    Leroyer L, Maraval V, Chauvin R (2012) Synthesis of the butatriene C4 function: methodology and applications. Chem Rev 112:1310–1343CrossRefGoogle Scholar
  16. 16.
    Maraval V, Chauvin R (2006) From macrocyclic oligo-acetylenes to aromatic ring carbo-mers. Chem Rev 106:5317–5343CrossRefGoogle Scholar
  17. 17.
    Cocq K, Lepetit C, Maraval V, Chauvin R (2015) «Carbo-aromaticity» and novel carbo-aromatic compounds. Chem Soc Rev 44:6535–6559CrossRefGoogle Scholar
  18. 18.
    Shishkin OV, Zubatyuk RI, Dyakonenko VV, Lepetit C, Chauvin R (2011) The C–Cl…π interactions inside supramolecular nanotubes of hexaethynyl-hexamethoxy[6]pericyclyne. Phys Chem Chem Phys 13:6837–6848CrossRefGoogle Scholar
  19. 19.
    Oleg V, Shishkin OV, Medvediev VV, Zubatyuk RI (2013) Supramolecular architecture of molecular crystals possessing shearing mechanical properties: columns versus layers. Cryst Eng Comm 15:160–167CrossRefGoogle Scholar
  20. 20.
    Li ZH, Smeu M, Rives A, Maraval V, Chauvin R, Ratner MA, Borguet E (2015) Towards graphyne molecular electronics. Nat Commun 6:6321. doi: 10.1038/ncomms7321 CrossRefGoogle Scholar
  21. 21.
    Poater A, Gallegos A, Solà M, Cavallo L, Carbó-Dorca R, Worth AP, Poater J (2008) Modeling the structure-property relationships of nanoneedles: a journey toward nanomedicine. J Comput Chem 30:275–284CrossRefGoogle Scholar
  22. 22.
    Poater A, Gallegos A, Solà M, Cavallo L, Worth AP (2010) Computational methods to predict the reactivity of nanoparticles through structure–property relationships. Expert Opin Drug Deliv 7:295–305CrossRefGoogle Scholar
  23. 23.
    Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. Montgomery A Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox, Gaussian DJ, Inc., Wallingford CT, 2009Google Scholar
  24. 24.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  26. 26.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  27. 27.
    Hehre JW, Radom L, PvR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  28. 28.
    Zhao Y, Truhlar DG (2008) The MO6 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  29. 29.
    Wachters AJH (1970) Gaussian basis set for molecular wavefunctions containing third-row atoms. J Chem Phys 52:1033–1036CrossRefGoogle Scholar
  30. 30.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  31. 31.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  32. 32.
    Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atòmic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  33. 33.
    Campo-Cacharrón A, Cabaleiro-Lago EM, Rodríguez-Otero J (2014) Interaction between ions and substituted buckybowls: a comprehensive computational study. J Comput Chem 35:1533–1544CrossRefGoogle Scholar
  34. 34.
    Schneebeli ST, Bochevarov AD, Friesner RA (2011) Parameterization of a B3LYP specific correction for noncovalent interactions and basis set superposition error on a gigantic data set of CCSD(T) quality noncovalent interaction energies. J Chem Theory Comput 7:658–668CrossRefGoogle Scholar
  35. 35.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  36. 36.
    Poater A et al (2009) SambVca: a web application for the calculation of the buried volume of N-heterocyclic carbene ligands. Eur J Inorg Chem 1759–1766Google Scholar
  37. 37.
    Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Understanding the M-(NHC) (NHC = N-heterocyclic carbene) bond. Coord Chem Rev 253:687–703CrossRefGoogle Scholar
  38. 38.
    Bosson J, Poater A, Cavallo L, Nolan SP (2010) Mechanism of racemization of chiral alcohols mediated by 16-electron ruthenium complexes. J Am Chem Soc 132:13146–13149CrossRefGoogle Scholar
  39. 39.
    Poater A, Falivene L, Urbina-Blanco CA, Manzini S, Nolan SP, Cavallo L (2013) How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand catalytic activity in olefin metathesis? Dalton Trans 42:7433–7439CrossRefGoogle Scholar
  40. 40.
    Ahmed SM, Poater A, Childers MI, Widger PCB, LaPointe AM, Lobkovsky EB, Coates GW, Cavallo L (2013) Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study. J Am Chem Soc 135:18901–18911CrossRefGoogle Scholar
  41. 41.
    Poater A, Ragone F, Mariz R, Dorta R, Cavallo L (2010) Comparing the enantioselective power of steric and electrostatic effects in transition-metal-catalyzed asymmetric synthesis. Chem Eur J 16:14348–14353CrossRefGoogle Scholar
  42. 42.
    Di Giovanni C, Poater A, Benet-Buchholz J, Cavallo L, Solà M, Llobet A (2014) Dinuclear Ru–Aqua complexes for selective epoxidation catalysis based on supramolecular substrate orientation effects. Chem Eur J 20:3898–3902CrossRefGoogle Scholar
  43. 43.
    Bridgeman AJ, Harris N, Young NA (2000) The spectroscopic identification and characterisation of carbonyl telluride (OCTe). Chem Commun 1241–1242Google Scholar
  44. 44.
    Poater A, Falivene L, Cavallo L, Llobet A, Rodríguez M, Solà M (2013) Simple and cheap steric and electronic characterization of the reactivity of Ru(II) complexes containing oxazoline ligands as epoxidation catalysts. Chem Phys Lett 577:142–146CrossRefGoogle Scholar
  45. 45.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113CrossRefGoogle Scholar
  46. 46.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity-the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  47. 47.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  48. 48.
    PvR Schleyer, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  49. 49.
    Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947CrossRefGoogle Scholar
  50. 50.
    Corminboeuf C, Heine T, Seifert G, PvR Schleyer, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes-interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
  51. 51.
    PvR Schleyer, Manoharan M, Jiao HJ, Stahl F (2001) The acenes: is there a relationship between aromatic stabilization and reactivity? Org Lett 3:3643–3646CrossRefGoogle Scholar
  52. 52.
    Saccavini C, Sui-Seng C, Maurette L, Lepetit C, Soula S, Zou CH, Donnadieu B, Chauvin R (2007) Functional [6]pericyclynes: aromatization to substituted carbo-benzenes. Chem Eur J 13:4914–4931CrossRefGoogle Scholar
  53. 53.
    Cocq K, Maraval V, Saffon-Merceron N, Chauvin R (2015) Carbo-benzene’s aromaticity, before and beyond: a tribute to Nozoe. Chem Rec 15:347–361CrossRefGoogle Scholar
  54. 54.
    Lepetit C, Silvi B, Chauvin R (2003) ELF analysis of out-of-plane aromaticity and in-plane homoaromaticity in carbo[N]annulenes and [N]pericyclyne. J Phys Chem A 107:464–473CrossRefGoogle Scholar
  55. 55.
    Cocq K, Maraval V, Saffon-Merceron N, Saquet A, Poidevin C, Lepetit C, Chauvin R (2015) carbo-quinoids: stability and reversible redox- proaromatic character towards carbo-benzenes. Angew Chem Int Ed 54:2703–2706CrossRefGoogle Scholar
  56. 56.
    Lepetit C, Nielsen MB, Diederich F, Chauvin R (2003) Aromaticity and electron affinity of carbo(k)-[3]radialenes, k = 0, 1, 2. Chem Eur J 20:5056–5066CrossRefGoogle Scholar
  57. 57.
    Leroyer L, Lepetit C, Rives A, Maraval V, Saffon-Merceron N, Kandaskalov D, Kieffer D, Chauvin R (2012) From hexaoxy-[6]pericyclynes to carbo-cyclohexadienes, carbo-benzenes, and dihydro-carbo-benzenes: synthesis, structure, and chromophoric and redox properties. Chem Eur J 18:322–3240CrossRefGoogle Scholar
  58. 58.
    Krygowski TM, Cyranski MK (2001) Structural Aspects of Aromaticity. Chem Rev 101:1385–1419CrossRefGoogle Scholar
  59. 59.
    Zou C, Lepetit C, Coppel Y, Chauvin R (2006) Ring carbo-mers: from questionable homo-aromaticity to bench aromaticity. Pure Appl Chem 78:791–811CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaGironaSpain
  2. 2.Physical Sciences and Engineering Division, Kaust Catalysis CentreKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Department of Theoretical Chemistry and Amsterdam Centre for Multiscale Modeling (ACMM)VU University AmsterdamAmsterdamThe Netherlands
  4. 4.Laboratoire de Chimie de CoordinationCNRSToulouse Cedex 4France
  5. 5.UPS, INPTUniversité de ToulouseToulouse Cedex 4France

Personalised recommendations