Advertisement

Structural Chemistry

, Volume 26, Issue 5–6, pp 1611–1619 | Cite as

Symmetry-controlled rearrangements in Piedfort Units (PU) of 2,4,6-triaryloxy-1,3,5-triazines

  • Petra Bombicz
  • Nikoletta B. Báthori
  • Alajos Kálmán
Original Research

Abstract

2,4,6-triaryloxy-1,3,5-triazines (POT) form in general molecular diads, termed as Piedfort Units (PU), in their crystals and their clathrates. Their bulky phenyl substituents (R = Me, F, Cl, Br, I, CN) in ortho, meta or para position substantially hinder internal rotations. Instead, non-crystallographic rotations (ncr) or translations (nct) are the bridges between the semirigid homologues or analogues, occasionally polymorphs. They occur in the space groups R3c (161), \(R\bar 3\) (148), \(P\bar 3c1\) (165), P63/m (176), \(P\bar 31c\) (163), P21/c (14), Ia (9), and \(P\bar 1\) (2). In each group, the molecules are close to be isometrical, while these groups are linked by non-crystallographic symmetries termed morphotropism. The observed non-crystallographic symmetries are virtual between the homologues and real between their dimorphs. Real ncr’s were also found between 4-RPOTs and their clathrate forms. It is demonstrated how e.g. toluene induces real nrc’s in its clathrate with 4-IPOT.

Keywords

Isostructurality Morphotropy Polymorphy Tris-triaryloxy-triazines Single crystal structures 

Notes

Acknowledgments

The authors thank Professors László Bihátsi and Mátyás Czugler for their valuable advices to the PhD work of N. B. Báthori (Budapest). P. B. and A. K. acknowledge the support from the Hungarian Scientific Research Foundation (OTKA K-100801).

References

  1. 1.
    Kálmán A, Párkányi L, Argay G (1993) Acta Crystallogr B 49:1039–1049CrossRefGoogle Scholar
  2. 2.
    Wells AF (1960) Inorganic structural chemistry, 3rd edn. Clarendon, Oxford 186 Google Scholar
  3. 3.
    Ojala WH, Smieja JM, Spude JM, Arola TM, Kupsa MK, Herrera N, Ojala CR (2007) Acta Crystallogr B 63:485–496CrossRefGoogle Scholar
  4. 4.
    Saha BK, Nangia A (2007) Cryst Growth Des 7:396–401CrossRefGoogle Scholar
  5. 5.
    Fábián L, Kálmán A (1999) Acta Crystallogr B 55:1099–1108CrossRefGoogle Scholar
  6. 6.
    Rutherford JS (1997) Acta Chim Hung 134:395–405Google Scholar
  7. 7.
    Dziubek KF, Katrusiak A (2003) Z Kristallogr 218:1–8Google Scholar
  8. 8.
    Gelbrich T, Hursthouse MB (2005) CrystEngComm 7:324–336 (and references therein) CrossRefGoogle Scholar
  9. 9.
    Hundt R, Schön JC, Jansen MJ (2006) J Appl Crystallogr 39:6–16CrossRefGoogle Scholar
  10. 10.
    Kálmán A, Párkányi L (1997) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 3. JAI Press, Greenwich, pp 189–226Google Scholar
  11. 11.
    Kálmán A (2005) Acta Crystallogr B 61:536–547CrossRefGoogle Scholar
  12. 12.
    Kálmán A, Fábián L (2007) Acta Crystallogr B 63:411–417CrossRefGoogle Scholar
  13. 13.
    Groth P (1870) Berichte Chem Ges 3:449–457CrossRefGoogle Scholar
  14. 14.
    Groth P (1906) An introduction to chemical crystallography (trans. H. Marschall) Gurney & Jackson, London, pp 36–65Google Scholar
  15. 15.
    Kitaigorodskii AI (1961) Organic chemical crystallography. Consultants Bureau, New YorkGoogle Scholar
  16. 16.
    Fábián L, Kálmán A, Argay G, Bernáth G, Gyarmati ZC (2005) Cryst Growth Des 5:773–782CrossRefGoogle Scholar
  17. 17.
    Fábián L, Kálmán A, Argay G, Bernáth G, Gyarmati ZC (2004) Chem Commun pp 2114–2115Google Scholar
  18. 18.
    Fábián L, Bombicz P, Czugler M, Kálmán A, Weber E, Hecker M (1999) Supramol Chem 11:151–167CrossRefGoogle Scholar
  19. 19.
    Zimmermann H, Bürzlaff H (1985) Z Kristall 170:241–246CrossRefGoogle Scholar
  20. 20.
    Anthony AR, Desiraju GR, Jetti RKR, Kuduva SS, Madhavi NNL, Nangia A, Thaimattam R, Thalladi VR (1998) Cryst Eng 1:1–18CrossRefGoogle Scholar
  21. 21.
    Thalladi VR, Brasselet S, Weiss HC, Bläser D, Katz AK, Carrell HL, Boese R, Zyss J, Nangia A, Desiraju GR (1998) J Am Chem Soc 120:2563–2577CrossRefGoogle Scholar
  22. 22.
    Boese R, Desiraju GR, Jetti RKR, Kirchner MT, Ledoux I, Thalladi VR, Zyss J (2002) Struct Chem 13:321–328CrossRefGoogle Scholar
  23. 23.
    Reichenbächer K, Süss HI, Stoeckli-Evans H, Bracco S, Sozzani P, Weber E, Hulliger J (2004) New J Chem 28:393–397CrossRefGoogle Scholar
  24. 24.
    Saha BK, Aitipamula S, Banerjee R, Nangia A, Jetti RKR, Boese R, Lam CK, Mak TC (2005) Mol Cryst Liq Cryst 440:295–316CrossRefGoogle Scholar
  25. 25.
    Saha BK, Nangia A (2007) Heteroat Chem 18:185–194CrossRefGoogle Scholar
  26. 26.
    Bombicz P, Kálmán A (2008) Cryst Growth Des 8:2821–2823CrossRefGoogle Scholar
  27. 27.
    Allen FH (2002) Acta Crystallogr B 58:380–388CrossRefGoogle Scholar
  28. 28.
    Jessiman AS, MacNicol DD, Malison PR, Wallace IJ (1990) Chem Soc Chem Commun, pp 1619–1621Google Scholar
  29. 29.
    Fábián L, Kálmán A (2004) Acta Crystallogr B 60:547–558CrossRefGoogle Scholar
  30. 30.
    Báthori NB (2006) PhD thesis, Budapest (paper on synthesis is in preparation)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Petra Bombicz
    • 1
  • Nikoletta B. Báthori
    • 2
  • Alajos Kálmán
    • 1
  1. 1.Research Group of Chemical Crystallography, Institute of Organic Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.Department of ChemistryCape Peninsula University of TechnologyCape TownSouth Africa

Personalised recommendations