Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Design of a structural database for homoleptic transition metal complexes

  • 166 Accesses

  • 1 Citations

Abstract

The interest and possible contents of a structural database for homoleptic metal complexes (HCD) is analyzed with the help of a set of some 1400 crystal and gas-phase structural data sets. Some examples of stereochemical and bonding trends that can be obtained from such a data collection are given. Attention is paid also to pseudohomoleptic complexes. These are defined as compounds which are formally homoleptic, in the sense that all the ligands around a metal are chemically equivalent, but in one case two very different bonding situations are found, notably due to Jahn–Teller distortions. Another case of pseudohomoleptic complexes correspond to those molecules that are described as homoleptic but that show short intra- or intermolecular contacts to extra donor groups, making it effectively heteroleptic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Davidson PJ, Lappert MF, Pearce R (1974) Stable homoleptic metal alkyls. Acc Chem Res 7:209–217

  2. 2.

    Masters SL (2013) Gas phase structure of small molecules. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 9. Elsevier, Amsterdam, pp 89–107

  3. 3.

    Hargittai M, Hargittai I (1977) The molecular geometries of coordination compounds in the vapour phase. Elsevier, Amsterdam

  4. 4.

    Hargittai I, Hargittai M (eds) (1988) Stereochemical applications of gas-phase electron diffraction. VCH Publishers, New York

  5. 5.

    Vogt N, Popov E, Rudert R, Kramer R, Vogt J (2010) 3D visualization of molecular structures in the MOGADOC database. J Mol Struct 978:201–204

  6. 6.

    Richens DT (1997) The chemistry of aqua ions. A tour through the periodic table of the elements. Synthesis, structure and reactivity. Wiley, Chichester

  7. 7.

    Muñoz-Páez A, Sánchez-Marcos E (2013) Molecular structure of solvates and coordination compounds in solution as determined with EXAFS and XANES. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 9. Elsevier, Amsterdam, pp 133–158

  8. 8.

    Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

  9. 9.

    Bergerhoff G, Brown ID (1987) Inorganic crystal structure database. In: Allen FH, Bergerhoff G, Sievers R (eds) Crystallographic databases. IUCr, Chester, pp 77–95

  10. 10.

    Cirera J, Ruiz E, Alvarez S (2006) Shape and Spin State in tetracoordinate transition metal complexes. The case of the d6 configuration. Chem Eur J 12:3162

  11. 11.

    Cirera J, Ruiz E, Alvarez S (2008) Stereochemistry and spin state in four-coordinate transition metal complexes. Inorg Chem 47:2871–2889

  12. 12.

    Ellis JE (2006) Adventures with substances containing metals in negative oxidation states. Inorg Chem 45:3167–3186

  13. 13.

    King RB (2000) Structure and bonding in homoleptic transition metal hydride anions. Coord Chem Rev 200–202:813–829

  14. 14.

    Bronger W (1988) Complex transition metal hydrides. Comments Inorg Chem 8:150–170

  15. 15.

    Bronger W, Auffermann G (1998) New ternary alkali-metal–transition-metal hydrides synthesized at high pressures: characterization and properties. Chem Mater 10:2723–2732

  16. 16.

    Hurlburt PK, Rack JJ, Luck JS, Dec SF, Webb JD, Anderson OP, Strauss SH (1994) Nonclassical metal carbonyls: [Ag(CO)]+ and [Ag(CO)2]+. J Am Chem Soc 116:10003–10014

  17. 17.

    Weber L (1994) Homoleptic carbonyl precious metal cations. Angew Chem Int Ed 33:1077–1078

  18. 18.

    Bach C, Willner H, Wang C, Rettig SJ, Trotter J, Aubke F (1996) Cationic iridium(III) carbonyl complexes. Angew Chem Int Ed 35:1974–1976

  19. 19.

    Wang C, Siu SC, Hwang G, Bach C, Bley B, Bodenbinder M, Willner H, Aubke F (1996) Homoleptic carbonyl cations of palladium(I), palladium(II), platinum(II), and gold(I)—simplified synthetic routes to their fluoroantimonate(V) salts. Can J Chem 74:1952–1958

  20. 20.

    Willner H, Aubke F (1997) Homoleptic metal carbonyl cations of the electron-rich metals: their generation in superacid media together with their spectroscopic and structural characterization. Angew Chem Int Ed 36:2402–2425

  21. 21.

    Ellis JE (2003) Metal carbonyl anions: from [Fe(CO)4]2− to [Hf(CO)6]2− and beyond. Organometallics 22:3322–3338

  22. 22.

    Brathwaite AD, Maner JA, Duncan MA (2014) Testing the limits of the 18-electron rule: the gas-phase carbonyls of Sc+ and Y+. Inorg Chem 53:1166–1169

  23. 23.

    Dunbar KR, Heintz RA (1997) Cyano complexes. Progr Inorg Chem 45:283

  24. 24.

    Weber L (1998) Homoleptic isocyanide metalates. Angew Chem Int Ed 37:1515–1517

  25. 25.

    Buschbeck R, Low PJ, Lang H (2011) Homoleptic transition metal acetylides. Coord Chem Rev 255:241–272

  26. 26.

    Berben LA, Long JR (2005) Homoleptic trimethylsilylacetylide complexes of chromium(III), iron(II), and cobalt(III): syntheses, structures, and ligand field parameters. Inorg Chem 44:8459–8468

  27. 27.

    Wilkinson G (1993/94) Homoleptic alkyls and aryls of the platinum group metals. Sci Progr 77:15–27

  28. 28.

    Seaman LA, Walensky JR, Wu G, Hayton TW (2013) In pursuit of homoleptic actinide alkyl complexes. Inorg Chem 52:3556–3564

  29. 29.

    Koschmieder SU, Wilkinson G (1991) Homoleptic and related aryls of transition metals. Polyhedron 10:135–173

  30. 30.

    El-Kurdi S, Seppelt K (2011) Homoleptic organometallic anions of Ti, Zr, Hf, and Nb. Chem Eur J 17:3956–3962

  31. 31.

    García-Monforte MA, Alonso PJ, Forniés J, Menjón B (2007) New advances in homoleptic organotransition-metal compounds. The case of perhalophenyl ligands. Dalton Trans 31:3347–3359

  32. 32.

    Quail JW, Rivett GA (1972) Complex fluorides of tetravalent cobalt. Can J Chem 50:2447–2450

  33. 33.

    Drews T, Supel J, Hagenbach A, Seppelt K (2006) Solid state molecular structures of transition metal hexafluorides. Inorg Chem 45:3782–3788

  34. 34.

    Molski MJ, Seppelt K (2009) The transition metal hexafluorides. Dalton Trans 18:3379–3383

  35. 35.

    Wang X, Andrews L, Brosi F, Riedel S (2013) Matrix infrared spectroscopy and quantum-chemical calculations for the coinage-metal fluorides: comparisons of Ar–AuF, Ne–AuF, and molecules MF2 and MF3. Chem Eur J 19:1397–1409

  36. 36.

    Seppelt K (2015) Molecular hexafluorides. Chem Rev 115:1296–1306

  37. 37.

    Graudejus O, Wilkinson AP, Chacón LC, Bartlett N (2000) MF interatomic distances and effective volumes of second and third transition series MF6 and MF6 2− anions. Inorg Chem 39:2794–2800

  38. 38.

    Richardson AD, Hedberg K, Lucier GM (2000) Gas-phase molecular structures of third row transition-metal hexafluorides WF6, ReF6, OsF6, IrF6, and PtF6. An electron-diffraction and ab initio study. Inorg Chem 39:2787–2793

  39. 39.

    Sassmannshausen M, Lutz HD (2001) Cesium chromium halides Cs3CrCl6, Cs3Cr2Cl9, and Cs3CrBr 6—preparation, properties, crystal structure. Z Anorg Allg Chem 627:1071–1076

  40. 40.

    Tamadon F, Seppelt K (2013) The elusive halides VCl5, MoCl6 and ReCl6. Angew Chem Int Ed 52:767–769

  41. 41.

    Hargittai M (2000) Molecular structure of metal halides. Chem Rev 100:2233–2301

  42. 42.

    Kornath A (2001) Homoleptic azidometalates. Angew Chem Int Ed 40:3135–3136

  43. 43.

    Haiges R, Boatz JA, Bau R, Schneider S, Schroer T, Yousufuddin M, Christe KO (2005) Polyazide chemistry: the first binary group 6 azides. Angew Chem Int Ed 44:1860–1865

  44. 44.

    Portius P, Davis M (2013) Recent developments in the chemistry of homoleptic azido complexes of the main group elements. Coord Chem Rev 257:1011–1025

  45. 45.

    Niewa R, DiSalvo FJ (1998) Recent developments in nitride chemistry. Chem Mater 10:2733–2752

  46. 46.

    Drews T, Seidel S, Seppelt K (2002) Gold–xenon complexes. Angew Chem Int Ed 41:454–456

  47. 47.

    Buzzeo MC, Iqbal AH, Long CM, Millar D, Patel S, Pellow MA, Saddoughi SA, Smenton AL, Turner JFC, Wadhawan JD, Compton RG, Golen JA, Rheingold AL, Doerrer LH (2004) Homoleptic cobalt and copper phenolate A2[M(OAr)4] compounds: the effect of phenoxide fluorination. Inorg Chem 43:7709–7725

  48. 48.

    Metz MV, Sun Y, Stern CL, Marks TL (2002) Weakly coordinating Al-, Nb-, Ta-, Y-, and La-based perfluoroaryloxymetalate anions. Organometallics 21:3691–3702

  49. 49.

    Beswick CL, Schulman JM, Stiefel EI (2003) Structures and structural trends in homoleptic dithiolene complexes. Progr Inorg Chem 52:55–110

  50. 50.

    Zanello P, Grigiotti E (2004) Homoleptic, mononuclear transition metal complexes of 1,2-dithiolenes: updating their electrochemical-to-structural properties. In: Pombeiro A, Amatore C (eds) Trends in inorganic molecular electrochemistry, Marcel Dekker Inc., pp 3–70

  51. 51.

    Eisenberg R, Gray HB (2011) Noninnocence in metal complexes: a dithiolene dawn. Inorg Chem 50:9741–9751

  52. 52.

    Zanello P, Corsini M (2006) Homoleptic, mononuclear transition metal complexes of 1,2-dioxolenes: updating their electrochemical-to-structural (X-ray) properties. Coord Chem Rev 250:2000–2022

  53. 53.

    Constable EC (1989) Homoleptic complexes of 2,2′-bipyridine. Adv Inorg Chem 34:1–63

  54. 54.

    Jones PG (1981) X-ray structural investigations of gold compounds. Gold Bull 14:159–166

  55. 55.

    Zimmermann M, Anwander R (2010) Homoleptic rare-earth metal complexes containing Ln–C sigma-bonds. Chem Rev 110:6194–6259

  56. 56.

    Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D (2005) Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord Chem Rev 249:1693

  57. 57.

    Alvarez S, Ruiz E (2012) Self-assembly of coordination compounds: design principles. In: Steed JW, Gale PA (eds) Supramolecular chemistry, from molecules to nanomaterials, vol 5. Wiley, Chichester, pp 1993–2044

  58. 58.

    Cremades E, Echeverría J, Alvarez S (2010) The trigonal prism in coordination chemistry. Chem Eur J 16:10380–10396

  59. 59.

    Seidel R, Schnautz B, Henkel G (1996) [Mn(CO)4], the first square-pyramidal pentacarbonyl complex in the complex salt [Ph4P][Mn(CO)5], and [Mn3Se2(CO)9]2−, the first mixed carbonyl-selenido complex of manganese. Angew Chem Int Ed 35:1710

  60. 60.

    Azhakar R, Roesky HW, Holstein JJ, Dittrich B (2012) The group 7 metal carbonyl complexes from a stable heteroleptic silylene PhC(NtBu)2SiNPh2. Dalton Trans 41:12096

  61. 61.

    Hillier AC, Sella A, Elsegood MRJ (2002) The reaction of samarium(II) with manganese carbonyl: unexpected conversion of CO to formate. X-ray crystal structures of [Sm(TpMe2)2]Mn(CO)5 and {[Sm(TpMe2)2]2(mu-HCO2)}Mn(CO)5 (TpMe2 = HB(3,5-dimethylpyrazolyl). J Organomet Chem 664:298

  62. 62.

    Nelson KJ, Giles ID, Shum WW, Arif AM, Miller JS (2005) The myth of cyanide always being a strong-field ligand: synthesis ad structural characterization of homoleptic S = 2 pentacyanochromate(II), [CrII(CN)5]3−, and nonacyanodichromate(II), [Cr 2 II (CN)9]5−. Angew Chem Int Ed 44:3129

  63. 63.

    Raymond KN, Corfield PWR, Ibers JA (1968) Structure of tris(ethylenediamine)chromium(III) pentacyanonickelate(II) sesquihydrate, [Cr(NH2CH2CH2NH2)3][Ni(CN)5]·1.5H2O. Inorg Chem 7:1362

  64. 64.

    Shi Y-S, Ran M-Q, Chen Y-Y, Yuan A-H (2012) Tetraaquatetrakis(4,4′-bipyridine dioxide-kO)terbium(III) octacyanidotungstate(V). Acta Crystallogr E Struct Rep Online 68:m288

  65. 65.

    Szklarzewicz J, Samotus A, Nowicka B, Burgess J, Fawcett J, Russell DR (1999) Structure and properties of the ion pair charge-transfer complex of octacyanotungstate(IV) with the 2,2′-bipyridinium dication. Transit Met Chem 24:177

  66. 66.

    Przychodzen P, Pelka R, Lewinski K, Supel J, Rams M, Tomala K, Sieklucka B (2007) Tuning of magnetic properties of polynuclear lanthanide(III)–octacyanotungstate(V) systems: determination of ligand-field parameters and exchange interaction. Inorg Chem 46:8924

  67. 67.

    Figgis BN, Kucharski ES, Forsyth JB (1991) The structure of (ND4)2Cr(SO4)2·6D2O at 4.3 K by neutron diffraction. Acta Crystallogr C 47:419–421

  68. 68.

    Shmilovits M, Diskin-Posner Y, Vinodu M, Goldberg I (2003) Crystal engineering of “porphyrin sieves” based on coordination polymers of Pd- and Pt-tetra(4-carboxyphenyl)porphyrin. Cryst Growth Des 3:855

  69. 69.

    Englich U, Massa W, Tressaud A (1992) Structure of trisodium hexafluoromanganate(III). Acta Crystallogr C 48:6–8

  70. 70.

    Chen M-Q, Zhu S-S, Gu Y-D (1990) Hexakis(dimethyl sulfoxide-O)-copper(II) hexatungstate. Jiegou Huaxue (Chin J Struct Chem) 9:26

  71. 71.

    McFadden DL, McPhail AT, Garner CD, Mabbs FE (1975) Crystal and molecular structure, electron spin resonance, and electronic spectrum of hexakis(imidazole)copper(II) nitrate. J Chem Soc, Dalton Trans 3:263

  72. 72.

    Bai Y, Zheng G-S, Dang D-B, Gao H, Qi Z-Y, Niu J-Y (2010) A one-dimensional polyoxomatelate-based polymer [Cu(DMF)6][PMoVMo 11 VI O40Cu(DMF)4]·DMF: crystal structure and luminescent properties. Spectrochim Acta A 77:727

  73. 73.

    Wang Y, Xu L, Jiang N, Zhao L, Li F, Liu X (2011) Multidimensional frameworks constructed from Keggin-type heteropolyblue of molybdenum–tungsten cluster. CrystEngComm 13:410

  74. 74.

    Ji S-J, Yu H, Lang J-P (2002) Synthesis and structural characterization of [Cu(DMF)6][(η5-C5Me5)WS3(CuBr)3]2·Et2O. Jiegou Huaxue (Chin J Struct Chem) 21:26

  75. 75.

    Studer M, Riesen A, Kaden TA (1989) Metal complexes with macrocyclic ligands. Part XXX. Synthesis and structure of halocuprates of tetraprotonated 1,4,8,11-tetraazacyclotetradecane and its Cu2+ complex. Helv Chim Acta 72:1253

  76. 76.

    Babar MA, Ladd MFC, Larkworthy LF, Povey DC, Proctor DJ, Summers LJ (1981) The crystal structures of propane-1,3-diammonium tetrachlorochromate(II), a sheet ferromagnet, and bis(dimethylammonium) tetrachlorochromate(II) an antiferromagnetic compound containing isolated [Cr3Cl12]6− units. Chem Commun 20:1046

  77. 77.

    Witteveen HT, Jongejan DL, Brandwijk V (1974) Preparation of compounds A2CuCl4-xBrx (A = K, Rb, NH4, Tl; x = 0, 1, 2) and crystal structures of compounds Rb2CuCl4-xBrx with ordered distribution of the anions. Mater Res Bull 9:345–352

  78. 78.

    Babel D, Otto M (1989) Die Jahn-Teller-Verzerrung in den Kristallstrukturen der DinatriumTetrafluorometallate Na2CuF4 und Na2CrF4. Z Naturforsch B Anorg Chem Org Chem 44:715–720

  79. 79.

    Waltersson K, Wilhelmi KA, Carpy A, Galy J (1974) 6041 VF6. Bull Soc Fr Miner Cristallogr 97:13–17

  80. 80.

    Gaughan AP Jr, Dori Z, Ibers JA (1974) Structure of tetrafluoroboratotris(triphenylphosphine)copper(I). Cu(BF4)(P(C6H5)3)3. Example of a copper(I) complex containing a weakly coordinated tetrafluoroborate anion. Inorg Chem 13:1657

  81. 81.

    Mazej Z, Goreshnik E (2008) Synthesis, Raman spectra and crystal structures of [Cu(XeF2)n](SbF6)2 (n = 2, 4). Inorg Chem 47:4209–4214

  82. 82.

    Clarke AJ, Ingleson MJ, Kociok-Kohn G, Mahon MF, Patmore NJ, Rourke JP, Ruggiero GD, Weller AS (2004) Silver–phosphine complexes of the highly methylated carborane monoanion [closo-1-H-CB11Me11]. J Am Chem Soc 126:1503

  83. 83.

    Coucouvanis D, Baezinger NC, Johnson SM (1974) Metal complexes as ligands. IV. Structures of bis[bis(triphenylphosphine)silver(I)]bis[1,2-dicyano-1,2-ethylenedithiolato)nickelate(II), and of the bis[bis(triphenylphosphine)silver(I)] bis(1,1-dicyano-2,2-ethylenedithiolato)nickelate(II). Inorg Chem 13:1191

  84. 84.

    Bachman RE, Andretta DF (1998) Metal–ligand bonding in coinage metal-phosphine complexes: the synthesis and structure of some low-coordinate silver(I)–phosphine complexes. Inorg Chem 37:5657

  85. 85.

    Hurlburt PK, Rack JJ, Dec SF, Anderson OP, Strauss SH (1993) Bis(carbonyl)silver tetrakis(pentafluorooxotellurato)borate: the first structurally characterized M(CO)2 complex. Inorg Chem 32:373

  86. 86.

    Alonso PJ, Falvello LR, Forniés J, García-Monforte MA, Menjón B (2004) A five-coordinate homoleptic organotitanium(III) compound. Angew Chem Int Ed 43:5225

  87. 87.

    Alvarez S (2013) A cartography of the Van der Waals territory. Dalton Trans 42:8617–8636

  88. 88.

    Alonso PJ, Forniés J, García-Monforte MA, Martín A, Menjón B, Rillo C (2002) A new series of homoleptic, paramagnetic organochromium derivatives: synthesis, characterization, and study of their magnetic properties. Chem Eur J 8:4056

  89. 89.

    Hay-Motherwell RS, Hussain-Bates B, Hursthouse MB, Wilkinson G (1990) Synthesis and X-ray crystal structure of trimesitylrhodium(III). J Chem Soc Chem Commun 1242

  90. 90.

    Barybin MV, Young VG Jr, Ellis JE (2000) First paramagnetic zerovalent transition metal isocyanides. Synthesis, structural characterizations, and magnetic properties of novel low-valent isocyanide complexes of vanadium. J Am Chem Soc 122:4678

Download references

Author information

Correspondence to Santiago Alvarez.

Additional information

Dedicated to Magdolna Hargittai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Valparís, J., Alvarez, S. Design of a structural database for homoleptic transition metal complexes. Struct Chem 26, 1715–1723 (2015). https://doi.org/10.1007/s11224-015-0651-3

Download citation

Keywords

  • Homoleptic complexes
  • Transition metal
  • Stereochemistry
  • Structural databases
  • Pseudohomoleptic complexes