Structural Chemistry

, Volume 27, Issue 3, pp 753–762 | Cite as

A computational study on [(PH2X)2]·+ homodimers involving intermolecular two-center three-electron bonds

  • Marta Marín-Luna
  • Ibon Alkorta
  • José Elguero
Original Research


A computational study at CCSD(T) theoretical level has been carried out on radical cation [(PH2X)2]·+ homodimers. Four stable minima configurations have been found for seven substituted phosphine derivatives, X = H, CH3, CCH, NC, OH, F and Cl. The most stable minimum presents an intermolecular two-center three-electron P···P bond except for X = CCH. The other three minima correspond to an alternative P···P pnicogen bonded complex, to a P···X contact and the last one to the complex resulting from a proton transfer, PH3X+:PHX·. The complexes obtained have been compared with those of the corresponding neutral ones, (PH2X)2, and the analogous protonated ones, PH3X+:PH2X, recently described in the literature. The spin and charge densities of the complexes have been examined. The electronic characteristics of the complexes have been analyzed with the NBO and AIM methods. The results obtained for the spin density, charge and NBO are coherent for all the complexes.


Pnicogen bonds Radical cation phosphines Two-center three-electron Molecular electrostatic potentials Stabilizing charge transfer energies 



This work has been supported by the Spanish Ministerio de Economía y Competitividad (CTQ2012-35513-C02-02) and Comunidad Autónoma de Madrid (S2013/MIT-2841, Fotocarbon). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged. One of us (M.M.-L.) thanks the Ministerio de Economía y Competitividad for her contract.

Supplementary material

11224_2015_617_MOESM1_ESM.doc (2.1 mb)
Molecular graphs, CCSD(T)/CBS energy and geometry of the minima of the system calculated. Bond lengths and angles values of both monomers, A and B, in the complexes. Net charge values of monomers A in the complexes.(DOC 2130 kb)


  1. 1.
    Pauling L (1931) The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J Am Chem Soc 53:3225–3237CrossRefGoogle Scholar
  2. 2.
    Fourré I, Silvi B (2007) What can we learn from two-center three-electron bonding with the topological analysis of ELF? Heteroat Chem 18:135–160CrossRefGoogle Scholar
  3. 3.
    Sodupe M, Oliva A, Bertrán J (1995) Theoretical study of the ionization of the H2S–H2S, PH3–H2S, and ClH–H2S hydrogen bonded molecules. J Am Chem Soc 117:8416–8421CrossRefGoogle Scholar
  4. 4.
    Wadey JD, Besley NA (2014) The structure and bonding of mixed component radical cation clusters. Chem Phys Lett 601:110–115CrossRefGoogle Scholar
  5. 5.
    Zhang S, Wang X, Sui Y, Wang X (2014) Odd-electron-bonded sulfur radical cations: X-ray structural evidence of a sulfur–sulfur three-electron sigma-bond. J Am Chem Soc 136:14666–14669CrossRefGoogle Scholar
  6. 6.
    Ji LF, Li AY, Li ZZ (2014) Structures and stabilities of asymmetrical dimer radical cation systems (AH3–H2O)+ (A = N, P, As). Struct Chem 26:109–119CrossRefGoogle Scholar
  7. 7.
    Do H, Besley N (2013) Proton transfer or hemibonding? The structure and stability of radical cation clusters. Phys Chem Chem Phys 15:16214–16219CrossRefGoogle Scholar
  8. 8.
    Stein T, Jiménez-Hoyos CA, Scuseria GE (2014) Stability of hemi-bonded vs proton-transferred structures of (H2O)2+, (H2S)2+, and (H2Se)2+ studied with projected Hartree–Fock methods. J Phys Chem A 118:7261–7266CrossRefGoogle Scholar
  9. 9.
    Joshi R, Ghanty TK, Naumov S, Mukherjee T (2007) Structural investigation of asymmetrical dimer radical cation system (H2O–H2S)+: proton-transferred or hemi-bonded? J Phys Chem A 111:2362–2367CrossRefGoogle Scholar
  10. 10.
    Bil A, Berski S, Latajka Z (2007) On three-electron bonds and hydrogen bonds in the open-shell complexes [H2X2]+ for X = F, Cl, and Br. J Chem Inf Model 47:1021–1030CrossRefGoogle Scholar
  11. 11.
    Gill PMW, Radom L (1988) Structures and stabilities of singly charged three-electron hemibonded systems and their hydrogen-bonded isomers. J Am Chem Soc 110:4931–4941CrossRefGoogle Scholar
  12. 12.
    Maity DK (2002) Sigma bonded radical cation complexes: a theoretical study. J Phys Chem A 106:5716–5721CrossRefGoogle Scholar
  13. 13.
    Ji LF, Li AY, Li ZZ (2015) Structures and stabilities of hemi-bonded vs proton-transferred isomers of dimer radical cation systems (XH3_YH3)+ (X, Y = N, P, As). Chem Phys Lett 619:115–121CrossRefGoogle Scholar
  14. 14.
    Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953CrossRefGoogle Scholar
  15. 15.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theory Comput 8:2320–2327CrossRefGoogle Scholar
  16. 16.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2014) Pnicogen bonds between X = PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537CrossRefGoogle Scholar
  17. 17.
    Del Bene JE, Alkorta I, Elguero J (2014) σ–σ and σ–π pnicogen bonds in complexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3 and H. Theor Chem Acc 133:1–9Google Scholar
  18. 18.
    Del Bene JE, Alkorta I, Elguero J (2015) Substituent effects on the properties of pnicogen-bonded complexes H2XP:PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3, CN, and H. J Phys Chem A 119:224–233CrossRefGoogle Scholar
  19. 19.
    Eskandari K, Mahmoodabadi N (2013) Pnicogen bonds: a theoretical study based on the Laplacian of electron density. J Phys Chem A 117:13018–13024CrossRefGoogle Scholar
  20. 20.
    Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2013) Intramolecular pnicogen interactions in PHF–(CH2)n–PHF (n = 2–6) systems. ChemPhysChem 14:1656–1665CrossRefGoogle Scholar
  21. 21.
    Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288CrossRefGoogle Scholar
  22. 22.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  23. 23.
    Setiawan D, Kraka E, Cremer D (2014) Description of pnicogen bonding with the help of vibrational spectroscopy—the missing link between theory and experiment. Chem Phys Lett 614:136–142CrossRefGoogle Scholar
  24. 24.
    Setiawan D, Kraka E, Cremer D (2015) Strength of the pnicogen bond in complexes involving group V elements N, P, and As. J Phys Chem A 119:1642–1656CrossRefGoogle Scholar
  25. 25.
    Del Bene JE, Alkorta I, Elguero J (2015) Substituent effects on the properties of pnicogen-bonded complexes H2XP:PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3, CN, and H. J Phys Chem A 119:224–233CrossRefGoogle Scholar
  26. 26.
    Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–3392CrossRefGoogle Scholar
  27. 27.
    Del Bene JE, Alkorta I, Elguero J (2014) Influence of substituent effects on the formation of P···Cl pnicogen bonds or halogen bonds. J Phys Chem A 118:2360–2366CrossRefGoogle Scholar
  28. 28.
    Azofra LM, Alkorta I, Elguero J (2014) Chiral discrimination in dimers of diphosphines PH2–PH2 and PH2–PHF. ChemPhysChem 15:3663–3670CrossRefGoogle Scholar
  29. 29.
    Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953CrossRefGoogle Scholar
  30. 30.
    Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620CrossRefGoogle Scholar
  31. 31.
    Scheiner S (2013) Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 15:3119–3124CrossRefGoogle Scholar
  32. 32.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2013) Phosphorus as a simultaneous electron-pair acceptor in intermolecular P···N pnicogen bonds and electron-pair donor to Lewis acids. J Phys Chem A 117:3133–3141CrossRefGoogle Scholar
  33. 33.
    Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C:PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2. J Phys Chem A 117:6893–6903CrossRefGoogle Scholar
  34. 34.
    Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes H2C = (X)P:PXH2, for X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2:P···P pnicogen bonding at σ-holes and π-holes. J Phys Chem A 117:11592–11604CrossRefGoogle Scholar
  35. 35.
    Bauer S, Tschirschwitz S, Loennecke P, Frank R, Kirchner B, Clarke ML, Hey-Hawkins E (2009) Enantiomerically pure bis(phosphanyl)carbaborane(12) compounds. Eur J Inorg Chem 2009:2776–2788CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS, Janjic GV, Zaric SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31CrossRefGoogle Scholar
  37. 37.
    LaBarge MS, Andrews AM, Taleb-Bendiab A, Hillig KW II, Kuczkowski RL, Bohn RK (1991) Microwave spectrum, structure, and dipole moment of the phosphorus trifluoride–water complex. J Phys Chem 95:3523–3527CrossRefGoogle Scholar
  38. 38.
    Sundberg MR, Uggla R, Vinas C, Teixidor F, Paavola S, Kivekaes R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P···P distances. Inorg Chem Commun 10:713–716CrossRefGoogle Scholar
  39. 39.
    Tschirschwitz S, Loennecke P, Hey-Hawkins E (2007) Aminoalkylferrocenyldichlorophosphanes: facile synthesis of versatile chiral starting materials. Dalton Trans 2007:1377–1382CrossRefGoogle Scholar
  40. 40.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  41. 41.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  42. 42.
    Alkorta I, Elguero J, Grabowski SJ (2015) Pnicogen and hydrogen bonds: complexes between PH3X+ and PH2X systems. Phys Chem Chem Phys 17:3261–3272CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, WallingfordGoogle Scholar
  44. 44.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  45. 45.
    Del Bene JE (1993) Proton affinities of ammonia, water, and hydrogen fluoride and their anions: a quest for the basis-set limit using the Dunning augmented correlation-consistent basis sets. J Phys Chem 97:107–110CrossRefGoogle Scholar
  46. 46.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  47. 47.
    Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  48. 48.
    Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) Basis set convergence of the interaction energy of hydrogen-bonded complexes. J Chem Phys 111:9157–9167CrossRefGoogle Scholar
  49. 49.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Basis-set convergence of the energy in molecular Hartree–Fock calculations. Chem Phys Lett 302:437–446CrossRefGoogle Scholar
  50. 50.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  51. 51.
    Popelier PL (2000) Atoms in molecules: an introduction. Prentice Hall, LondonCrossRefGoogle Scholar
  52. 52.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinham Google Scholar
  53. 53.
    AIMAll (Version 14.11.23), Keith TA (2014) TK Gristmill Software, Overland Park KS, USA ( Scholar
  54. 54.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  55. 55.
    Jmol: an open-source Java viewer for chemical structures in 3D, version 13.10. Accessed 26 Sept 2013
  56. 56.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  57. 57.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO-6. Theoretical Chemistry Institute, University of Wisconsin, MadisnGoogle Scholar
  58. 58.
    Linstrom PJ, Mallard WG (eds) NIST Chemistry webbook, NIST standard reference database number 69, National Institute of Standards and Technology. Gaithersburg 20899. Accessed Mar 2015
  59. 59.
    Knop O, Boyd RJ, Choi SC (1988) Sulfur–sulfur bond lengths, or can a bond length be estimated from a single parameter? J Am Chem Soc 110:7299–7301CrossRefGoogle Scholar
  60. 60.
    Alkorta I, Rozas I, Elguero J (1998) Bond length-electron density relationships: from covalent bonds to hydrogen bond interactions. Struct Chem 9:243–247CrossRefGoogle Scholar
  61. 61.
    Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Power law relationships between bond length, bond strength and electron density distributions. Phys Chem Miner 25:585–590CrossRefGoogle Scholar
  62. 62.
    Alkorta I, Barrios L, Rozas I, Elguero J (2000) Comparison of models to correlate electron density at the bond critical point and bond distance. J Mol Struct Theochem 496:131–137CrossRefGoogle Scholar
  63. 63.
    Knop O, Rankin KN, Boyd RJ (2001) Coming to grips with N–H···N bonds. 1. Distance relationships and electron density at the bond critical point. J Phys Chem A 105:6552–6566CrossRefGoogle Scholar
  64. 64.
    Knop O, Rankin KN, Boyd RJ (2003) Coming to grips with N–H···N bonds. 2. Homocorrelations between parameters deriving from the electron density at the bond critical point. J Phys Chem A 107:272–284CrossRefGoogle Scholar
  65. 65.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H···X (X = H, C, N, O, F, S, Cl, pi) interactions. Chem Eur J 16:2442–2452CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marta Marín-Luna
    • 1
  • Ibon Alkorta
    • 1
  • José Elguero
    • 1
  1. 1.Instituto de Química Médica (CSIC)MadridSpain

Personalised recommendations