Advertisement

Structural Chemistry

, Volume 26, Issue 5–6, pp 1405–1410 | Cite as

How membrane proteins work giving autonomous traverse pathways?

  • Julianna Kardos
  • László Héja
Review Article

Abstract

Enormous progress in computational chemistry shifted experiments toward predictive approaches. Such a paradigm shift applies to all branches of chemistry, especially to structural chemistry. To help the transfer of new knowledge in drug design practice, we reconsider a few vibrant topics of protein dynamics engaged in making predictions based on the timing of the events that are simulated. However, a complete explanation of the “dynamic evidence” also requires a reference to the time window allowing a prediction of the endpoint. Pioneering achievements disclosing the structure of large membrane proteins and their assemblies enabled the prediction of traverse pathways shaping membrane protein functions—essentially the efficacy of membrane proteins. Invoking significant advances made in characterizing the solute and ion symport of specific proteins through molecular dynamic simulations, early formation of a new type of solute–ion structure has been exposed as a prerequisite of Na+ symporter function. We demonstrate that the computational chemistry is one of the most appropriate models to study traverse pathways, and we also clarify the importance of the art of fast experimental techniques.

Keywords

Concept review Membrane proteins Traverse pathways Transporters Sodium and chloride symport Scaling dynamics 

Notes

Acknowledgments

This work was supported by Grants ERA-Chemistry OTKA 102166 and KMR_12-1-2012-0112 TRANSRAT.

References

  1. 1.
    Groen CP, Kovács A, Varga Z, Hargittai M (2012) Molecular structure and vibrational spectra of mixed MDyX4 (M = Li, Na, K, Rb, Cs; X = F, Cl, Br, I) vapor complexes: a computational and matrix-isolation infrared spectroscopic study. Inorg Chem 51:543–556CrossRefGoogle Scholar
  2. 2.
    Hargittai M (2005) High-temperature gas-phase electron diffraction: unexpected dimer structures among metal halides. Struct Chem 16:33–40CrossRefGoogle Scholar
  3. 3.
    Hargittai M (2009) Structural effects in molecular metal halides. Acc Chem Res 42:453–462CrossRefGoogle Scholar
  4. 4.
    Hargittai M, Réffy B (2004) Structural isomers of dihalosilanones. Theoretical determination of their geometries, spectroscopic constants, and potential energy surfaces. J Phys Chem A 108:10194–10199CrossRefGoogle Scholar
  5. 5.
    Hargittai M, Schultz G, Schwerdfeger P, Seth M (2001) Evidence for the singlet of CI2 being the ground state? The structure of carbon tetraiodide and carbon diiodide from electron diffraction and all carbon iodides, CIn (n = 1–4) from high level computation. Struct Chem 12:377–391CrossRefGoogle Scholar
  6. 6.
    Levy JB, Hargittai M (2000) Unusual dimer structures of the heavier alkaline earth dihalides: a density functional study. J Phys Chem A 104:1950–1958CrossRefGoogle Scholar
  7. 7.
    Levy JB, Jancsó G, Hargittai M (2003) Structure and thermodynamics of the tin dichloride dimer. J Phys Chem A 107:10450–10455CrossRefGoogle Scholar
  8. 8.
    Neizer Z, Varga Z, Jancsó G, Hargittai M (2007) Vapor phase tin diiodide: its structure and thermodynamics, a computational study. Struct Chem 18:641–648CrossRefGoogle Scholar
  9. 9.
    Varga Z, Hargittai M (2006) The NaDyBr 4 complex: its molecular structure and thermodynamic properties. Struct Chem 17:225–233CrossRefGoogle Scholar
  10. 10.
    Varga Z, Hargittai M (2008) Structures and thermodynamic properties of aluminum oxyhalides: a computational study. Struct Chem 19:595–602CrossRefGoogle Scholar
  11. 11.
    Bacon F The New Organon, Book II: 1–25, 23. http://www.earlymoderntexts.com/pdfs/bacon1620.pdf
  12. 12.
    Lehn JM (2013) Perspectives in chemistry—steps towards complex matter. Angew Chem Int Ed 52:2836–2850CrossRefGoogle Scholar
  13. 13.
    Pitulice L, Vilaseca E, Pastor I, Madurga S, Garcés JL, Isvoran A, Mas F (2014) Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size. Math Biosci 251:72–82CrossRefGoogle Scholar
  14. 14.
    Qin S, Zhou HX (2014) Further development of the FFT-based method for atomistic modeling of protein folding and binding under crowding: optimization of accuracy and speed. J Chem Theory Comput 10:2824–2835CrossRefGoogle Scholar
  15. 15.
    Barends TR, Foucar L, Botha S, Doak RB, Shoeman RL, Nass K, Koglin JE, Williams GJ, Boutet S, Messerschmidt M, Schlichting I (2014) De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505:244–247CrossRefGoogle Scholar
  16. 16.
    Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A, Doak RB, Weierstall U, DePonte DP, Steinbrener J, Shoeman RL, Messerschmidt M, Barty A, White TA, Kassemeyer S, Kirian RA, Seibert MM, Montanez PA, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner SM, Philipp HT, Tate MW, Hromalik M, Koerner LJ, van Bakel N, Morse J, Ghonsalves W, Arnlund D, Bogan MJ, Caleman C, Fromme R, Hampton CY, Hunter MS, Johansson LC, Katona G, Kupitz C, Liang M, Martin AV, Nass K, Redecke L, Stellato F, Timneanu N, Wang D, Zatsepin NA, Schafer D, Defever J, Neutze R, Fromme P, Spence JC, Chapman HN, Schlichting I (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364CrossRefGoogle Scholar
  17. 17.
    Feld GK, Frank M (2014) Enabling membrane protein structure and dynamics with X-ray free electron lasers. Curr Opin Struct Biol 27C:69–78CrossRefGoogle Scholar
  18. 18.
    Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN (2014) Disordered proteinaceous machines. Chem Rev 114:6806–6843CrossRefGoogle Scholar
  19. 19.
    Hargittai I (2014) Crystallography in structural chemistry. Struct Chem 25:1321–1326CrossRefGoogle Scholar
  20. 20.
    Johansson LC, Arnlund D, White TA, Katona G, Deponte DP, Weierstall U, Doak RB, Shoeman RL, Lomb L, Malmerberg E, Davidsson J, Nass K, Liang M, Andreasson J, Aquila A, Bajt S, Barthelmess M, Barty A, Bogan MJ, Bostedt C, Bozek JD, Caleman C, Coffee R, Coppola N, Ekeberg T, Epp SW, Erk B, Fleckenstein H, Foucar L, Graafsma H, Gumprecht L, Hajdu J, Hampton CY, Hartmann R, Hartmann A, Hauser G, Hirsemann H, Holl P, Hunter MS, Kassemeyer S, Kimmel N, Kirian RA, Maia FR, Marchesini S, Martin AV, Reich C, Rolles D, Rudek B, Rudenko A, Schlichting I, Schulz J, Seibert MM, Sierra RG, Soltau H, Starodub D, Stellato F, Stern S, Strüder L, Timneanu N, Ullrich J, Wahlgren WY, Wang X, Weidenspointner G, Wunderer C, Fromme P, Chapman HN, Spence JC, Neutze R (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9:263–265CrossRefGoogle Scholar
  21. 21.
    Tompa P (2014) Multisteric regulation by structural disorder in modular signaling proteins: an extension of the concept of allostery. Chem Rev 114:6715–6732CrossRefGoogle Scholar
  22. 22.
    Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B (2014) Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model. PLoS Comput Biol 10:e1003521CrossRefGoogle Scholar
  23. 23.
    Gamini R, Han W, Stone JE, Schulten K (2014) Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Comput Biol 10:e1003488CrossRefGoogle Scholar
  24. 24.
    Hegedűs T, Gyimesi G, Gáspár ME, Szalay KZ, Gangal R, Csermely P (2013) Potential application of network descriptions for understanding conformational changes and protonation states of ABC transporters. Curr Pharm Des 19:4155–4172CrossRefGoogle Scholar
  25. 25.
    Khoury GA, Liwo A, Khatib F, Zhou H, Chopra G, Bacardit J, Bortot LO, Faccioli RA, Deng X, He Y, Krupa P, Li J, Mozolewska MA, Sieradzan AK, Smadbeck J, Wirecki T, Cooper S, Flatten J, Xu K, Baker D, Cheng J, Delbem AC, Floudas CA, Keasar C, Levitt M, Popović Z, Scheraga HA, Skolnick J, Crivelli SN, Players F (2014) WeFold: a coopetition for protein structure prediction. Proteins 82:1850–1868CrossRefGoogle Scholar
  26. 26.
    Kurzynski M, Torchala M, Chelminiak P (2014) Output-input ratio in thermally fluctuating biomolecular machines. Phys Rev E 89:012722CrossRefGoogle Scholar
  27. 27.
    Zhou HX (2014) Theoretical frameworks for multiscale modeling and simulation. Curr Opin Struct Biol 25:67–76CrossRefGoogle Scholar
  28. 28.
    Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71CrossRefGoogle Scholar
  29. 29.
    Greives N, Zhou HX (2014) Both protein dynamics and ligand concentration can shift the binding mechanism between conformational selection and induced fit. Proc Natl Acad Sci USA 111:10197–10202CrossRefGoogle Scholar
  30. 30.
    Palló A, Bencsura Á, Héja L, Beke T, Perczel A, Kardos J, Simon Á (2007) Major human gamma-aminobutyrate transporter: in silico prediction of substrate efficacy. Biochem Biophys Res Commun 364:952–958CrossRefGoogle Scholar
  31. 31.
    Kenakin T (2014) What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol Sci 35:434–441CrossRefGoogle Scholar
  32. 32.
    Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90CrossRefGoogle Scholar
  33. 33.
    Uversky VN (2015) Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins. Biotechnol J 10:356–366CrossRefGoogle Scholar
  34. 34.
    Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci USA 111:7898–7905CrossRefGoogle Scholar
  35. 35.
    Chakrabarti S, Hinczewski M, Thirumalai D (2014) Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes. Proc Natl Acad Sci USA 111:9048–9053CrossRefGoogle Scholar
  36. 36.
    Dong H, Fiorin G, Carnevale V, Treptow W, Klein ML (2013) Pore waters regulate ion permeation in a calcium release-activated calcium channel. Proc Natl Acad Sci USA 110:17332–17337CrossRefGoogle Scholar
  37. 37.
    Ostmeyer J, Chakrapani S, Pan AC, Perozo E, Roux B (2013) Recovery from slow inactivation in K+ channels is controlled by water molecules. Nature 501:121–124CrossRefGoogle Scholar
  38. 38.
    Linke K, Ho FM (2014) Water in photosystem II: structural, functional and mechanistic considerations. Biochim Biophys Acta 1837:14–32CrossRefGoogle Scholar
  39. 39.
    Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T (2013) Allosteric mechanism of water-channel gating by Ca2+–calmodulin. Nat Struct Mol Biol 20:1085–1092CrossRefGoogle Scholar
  40. 40.
    Baconguis I, Hattori M, Gouaux E (2013) Unanticipated parallels in architecture and mechanism between ATP-gated P2X receptors and acid sensing ion channels. Curr Opin Struct Biol 23:277–284CrossRefGoogle Scholar
  41. 41.
    Zhuang T, Chisholm C, Chen M, Tamm LK (2013) NMR-based conformational ensembles explain pH-gated opening and closing of OmpG channel. J Am Chem Soc 135:15101–15113CrossRefGoogle Scholar
  42. 42.
    Bagnéris C, Decaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, Wallace BA (2013) Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 4:2465CrossRefGoogle Scholar
  43. 43.
    Dalmas O, Sompornpisut P, Bezanilla F, Perozo E (2014) Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 5:3590CrossRefGoogle Scholar
  44. 44.
    Liu S, Lockless SW (2013) Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels. Nat Commun 4:2746Google Scholar
  45. 45.
    Dawe GB, Musgaard M, Andrews ED, Daniels BA, Aurousseau MR, Biggin PC, Bowie D (2013) Defining the structural relationship between kainate-receptor deactivation and desensitization. Nat Struct Mol Biol 20:1054–1061CrossRefGoogle Scholar
  46. 46.
    Dürr KL, Chen L, Stein RA, De Zorzi R, Folea IM, Walz T, Mchaourab HS, Gouaux E (2014) Structure and dynamics of AMPA receptor glua2 in resting, pre-open, and desensitized states. Cell 158:778–792CrossRefGoogle Scholar
  47. 47.
    Kazi R, Dai J, Sweeney C, Zhou HX, Wollmuth LP (2014) Mechanical coupling maintains the fidelity of NMDA receptor-mediated currents. Nat Neurosci 17:914–922CrossRefGoogle Scholar
  48. 48.
    Maksay G (2013) Asymmetric perturbation of pLGICs: action! Trends Phramacol Sci 34:299–300CrossRefGoogle Scholar
  49. 49.
    Sauguet L, Shahsavar A, Poitevin F, Huon C, Menny A, Nemecz À, Haouz A, Changeux JP, Corringer PJ, Delarue M (2014) Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc Natl Acad Sci USA 111:966–971CrossRefGoogle Scholar
  50. 50.
    Unwin N (2013) Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys 46:283–322CrossRefGoogle Scholar
  51. 51.
    Velisetty P, Chalamalasetti SV, Chakrapani S (2014) Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). J Biol Chem 289:3013–3025CrossRefGoogle Scholar
  52. 52.
    Li Q, Wanderling S, Paduch M, Medovoy D, Singharoy A, McGreevy R, Villalba-Galea CA, Hulse RE, Roux B, Schulten K, Kossiakoff A, Perozo E (2014) Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol 21:244–252CrossRefGoogle Scholar
  53. 53.
    Tronin AY, Nordgren CE, Strzalka JW, Kuzmenko I, Worcester DL, Lauter V, Freites JA, Tobias DJ, Blasie JK (2014) Direct evidence of conformational changes associated with voltage gating in a voltage sensor protein by time-resolved X-ray/neutron interferometry. Langmuir 30:4784–4796CrossRefGoogle Scholar
  54. 54.
    Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412CrossRefGoogle Scholar
  55. 55.
    Ben-Naim A (2012) Levinthal’s question revisited, and answered. J Biomol Struct Dyn 30:113–124CrossRefGoogle Scholar
  56. 56.
    Kovrigin EL (2013) A commentary to Ben-Naim’s “Levinthal’s question revisited, and answered”. J Biomol Struct Dyn 31:1011–1012CrossRefGoogle Scholar
  57. 57.
    Taft CA, da Silva CHTP (2013) Comments on the paper ‘Levinthal’s question, revisited, and answered’. J Biomol Struct Dyn 31:1001–1002CrossRefGoogle Scholar
  58. 58.
    Adelman JL, Sheng Y, Choe S, Abramson J, Wright EM, Rosenberg JM, Grabe M (2014) Structural determinants of water permeation through the sodium-galactose transporter vSGLT. Biophys J 106:1280–1289CrossRefGoogle Scholar
  59. 59.
    Li J, Tajkhorshid E (2012) A gate-free pathway for substrate release from the inward-facing state of the Na+–galactose transporter. Biochim Biophys Acta 1818:263–271CrossRefGoogle Scholar
  60. 60.
    Heinzelmann G, Kuyucak S (2014) Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3. Biophys J 106:2675–2683CrossRefGoogle Scholar
  61. 61.
    Heinzelmann G, Kuyucak S (2014) Molecular dynamics simulations of the mammalian glutamate transporter EAAT3. PLoS ONE 9:e92089CrossRefGoogle Scholar
  62. 62.
    Jiang J, Shrivastava IH, Watts SD, Bahar I, Amara SG (2011) Large collective motions regulate the functional properties of glutamate transporter trimers. Proc Natl Acad Sci USA 108:15141–15146CrossRefGoogle Scholar
  63. 63.
    Kanner BI (2013) Substrate-induced rearrangements in glutamate-transporter homologs. Nat Struct Mol Biol 20:1142–1144CrossRefGoogle Scholar
  64. 64.
    Simon Á, Bencsura Á, Kardos J (2006) Target structure-based modeling of the glutamate transporter pharmacophore. Lett Drug Des Discov 3:293–297CrossRefGoogle Scholar
  65. 65.
    Jurik A, Zdrazil B, Holy M, Stockner T, Sitte HH, Ecker GF (2015) A binding mode hypothesis of tiagabine confirms liothyronine effect on γ-aminobutyric acid transporter 1 (GAT1). J Med Chem 58:2149–2158CrossRefGoogle Scholar
  66. 66.
    Kardos J, Palló A, Bencsura Á, Simon Á (2010) Assessing structure, function and druggability of major inhibitory neurotransmitter gamma-aminobutyrate symporter subtypes. Curr Med Chem 17:2203–2213CrossRefGoogle Scholar
  67. 67.
    Palló A, Simon Á, Bencsura Á, Héja L, Kardos J (2009) Substrate–Na+ complex formation: coupling mechanism for gamma-aminobutyrate symporters. Biochem Biophys Res Commun 385:210–214CrossRefGoogle Scholar
  68. 68.
    Skovstrup S, Taboureau O, Bräuner-Osborne H, Jörgensen FS (2010) Homology modelling of the GABA transporter and analysis of tiagabine binding. ChemMedChem 5:986–1000CrossRefGoogle Scholar
  69. 69.
    Wein T, Wanner KT (2010) Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA. J Mol Model 16:155–161CrossRefGoogle Scholar
  70. 70.
    Penmatsa A, Gouaux E (2014) How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J Physiol 592:863–869CrossRefGoogle Scholar
  71. 71.
    Hohl M, Briand C, Grütter MG, Seeger MA (2014) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol 19:395–402CrossRefGoogle Scholar
  72. 72.
    Jones PM, George AM (2012) Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter. J Phys Chem A 116:3004–3013CrossRefGoogle Scholar
  73. 73.
    Lin J-H, Akola J, Jones RO (2010) Structure and dynamics of large biological molecules: ATP-binding cassette (ABC) transporters. In: Münster G, Wolf D, Kremer M (eds) NIC symposium 2010, proceedings, John von Neumann Institute for Computing, Jülich, IAS Series Volume 3 ISBN 978-3-89336-606-4, pp 84–91Google Scholar
  74. 74.
    Mishra S, Verhalen B, Stein RA, Wen P-C, Tajkhorshid E, Mchaourab HS (2014) Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. Elife 3:e02740CrossRefGoogle Scholar
  75. 75.
    Oliveira AS, Baptista AM, Soares CM (2011) Inter-domain communication mechanisms in an ABC importer: a molecular dynamics study of the MalFGK2E complex. PLoS Comput Biol 7:e1002128CrossRefGoogle Scholar
  76. 76.
    Chong PA, Kota P, Dokholyan NV, Forman-Kay JD (2013) Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 3:a009522Google Scholar
  77. 77.
    Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon Á, Hegedűs T, Beekman JM, Lukács GL (2013) Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nature Chem Biol 9:444–454CrossRefGoogle Scholar
  78. 78.
    Rahman KS, Cui G, Harvey SC, McCarty NA (2013) Modeling the conformational changes underlying channel opening in CFTR. PLoS One 8:e74574CrossRefGoogle Scholar
  79. 79.
    Cheng MH, Bahar I (2013) Coupled global and local changes direct substrate translocation by neurotransmitter-sodium symporter ortholog LeuT. Biophys J 105:630–639CrossRefGoogle Scholar
  80. 80.
    Simon Á, Bencsura Á, Héja L, Magyar C, Kardos J (2014) Sodium-assisted formation of binding and traverse conformations of the substrate in a neurotransmitter sodium symporter model. Curr Drug Discov Technol 11:227–233CrossRefGoogle Scholar
  81. 81.
    Zdravkovic I, Zhao C, Lev B, Cuervo JE, Noskov SY (2012) Atomistic models of ion and solute transport by the sodium-dependent secondary active transporters. Biochim Biophys Acta 1818:337–347CrossRefGoogle Scholar
  82. 82.
    Zhao C, Noskov SY (2011) The role of local hydration and hydrogen-bonding dynamics in ion and solute release from ion-coupled secondary transporters. Biochemistry 50:1848–1856CrossRefGoogle Scholar
  83. 83.
    Zhao C, Noskov SY (2013) The molecular mechanism of ion-dependent gating in secondary transporters. PLoS Comput Biol 9:e1003296CrossRefGoogle Scholar
  84. 84.
    Zhao C, Stolzenberg S, Gracia L, Weinstein H, Noskov S, Shi L (2012) Ion-controlled conformational dynamics in the outward-open transition from an occluded state of LeuT. Biophys J 103:878–888CrossRefGoogle Scholar
  85. 85.
    Borre L, Thorvald F, Andreassen TF, Shi L, Weinstein H, Gether U (2014) The second sodium site in the dopamine transporter controls cation permeation and is regulated by chloride. J Biol Chem 289:25764–25773CrossRefGoogle Scholar
  86. 86.
    Kaczor AA, Guixà-González R, Carrió P, Obiol-Pardo C, Pastor M, Selent J (2012) Fractal dimension as a measure of surface roughness of G protein-coupled receptors: implications for structure and function. J Mol Model 18:4465–4475CrossRefGoogle Scholar
  87. 87.
    Lois G, Blawzdziewicz J, O’Hern CS (2010) Protein folding on rugged energy landscapes: conformational diffusion on fractal networks. Phys Rev E 81:051907CrossRefGoogle Scholar
  88. 88.
    Thul R (2014) Time to blip: stochastic simulation of single channel opening. Cold Spring Harb Protoc. doi: 10.1101/pdb.prot073239 Google Scholar
  89. 89.
    Kardos J, Nyikos L (2001) Universality of receptor channel responses. Trends Pharmacol Sci 22:642–645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Functional Pharmacology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations