Structural Chemistry

, Volume 27, Issue 2, pp 617–625 | Cite as

σ-Hole bond tunability in YO2X2:NH3 and YO2X2:H2O complexes (X = F, Cl, Br; Y = S, Se): trends and theoretical aspects

  • Mehdi D. EsrafiliEmail author
  • Fariba Mohammadian-Sabet
Original Research


A σ-hole is defined as an electron-deficient region on the extension of a covalently bonded group IV–VII atoms. If the electronic density in the σ-hole is sufficiently low, then this region will have a positive electrostatic potential, which allows attractive noncovalent interactions with negative sites. SO2X2 and SeO2X2 (X = F, Cl and Br) have three Lewis acid sites of σ-hole located in the outermost of chalcogen atom and X end, participating in the chalcogen and halogen bonds with NH3 and H2O, respectively. MP2/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ calculations reveal that for a given halogen atom, SeO2X2 forms stronger chalcogen bond interactions than SO2X2 counterpart. Almost a perfect linear relationship is evident between the interaction energies and the magnitudes of the product of most positive and negative electrostatic potentials. The interaction energies calculated by M06-2X and MP2 methods are almost consistent with each other.


σ-Hole Electrostatic potential Halogen bond Chalcogen bond MP2 

Supplementary material

11224_2015_594_MOESM1_ESM.doc (53 kb)
Supplementary material 1 (DOC 53 kb)


  1. 1.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  2. 2.
    Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311CrossRefGoogle Scholar
  3. 3.
    Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650CrossRefGoogle Scholar
  4. 4.
    Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704CrossRefGoogle Scholar
  5. 5.
    Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665CrossRefGoogle Scholar
  6. 6.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318CrossRefGoogle Scholar
  7. 7.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  8. 8.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548CrossRefGoogle Scholar
  9. 9.
    Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F–Cl and Cl2. Theor Chem Acc 131:1114CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294CrossRefGoogle Scholar
  11. 11.
    Politzer P, Murray JS (2013) Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. CrystEngComm 15:3145–3150CrossRefGoogle Scholar
  12. 12.
    Metrangolo P, Carcenac Y, Lahtinen M, Pilati T, Rissanen K, Vij A, Resnati G (2009) Nonporous organic solids capable of dynamically resolving mixtures of diiodoperfluoroalkanes. Science 323:1461–1464CrossRefGoogle Scholar
  13. 13.
    Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  14. 14.
    Esrafili MD (2013) A DFT investigation on hydrogen- and halogen-bonding interactions in dichloroacetic acid: application of NMR-GIAO and Bader theories. Struct Chem 24:39–47CrossRefGoogle Scholar
  15. 15.
    Esrafili MD, Solimannejad M (2013) Revealing substitution effects on the strength and nature of halogen-hydride interactions: a theoretical study. J Mol Model 19:3767–3777CrossRefGoogle Scholar
  16. 16.
    Esrafili MD, Ahmadi B (2012) A theoretical investigation on the nature of Cl···N and Br···N halogen bonds in F–Ar–X···NCY complexes (X=Cl, Br and Y=H, F, Cl, Br, OH, NH2, CH3 and CN). Comput Theor Chem 997:77–82CrossRefGoogle Scholar
  17. 17.
    Esrafili MD, Mohammadirad N (2013) Insights into the strength and nature of carbene···halogen bond interactions: a theoretical perspective. J Mol Model 19:2559–2566CrossRefGoogle Scholar
  18. 18.
    Esrafili MD, Mohammadian-Sabet F, Solimannejad M (2014) A theoretical evidence for mutual influence between S···N(C) and hydrogen/lithium/halogen bonds: competition and interplay between p-hole and r-hole interactions. Struct Chem 25:1197–1205CrossRefGoogle Scholar
  19. 19.
    Lu Y, Zou J, Wang Y, Jiang Y, Yu Q (2007) Ab Initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A 111:10781–10788CrossRefGoogle Scholar
  20. 20.
    Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620CrossRefGoogle Scholar
  21. 21.
    Tsuzuki S, Wakisaka A, Ono T, Sonoda T (2012) Origin of the attraction and directionality of the halogen bonds of the complexes of C6F5X and C6H5X (X=I, Br, Cl and F) with Pyridine. Chem Eur J 18:951–960CrossRefGoogle Scholar
  22. 22.
    Riley KE, Murray JS, Fanfrlík J, Rezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659CrossRefGoogle Scholar
  23. 23.
    Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038CrossRefGoogle Scholar
  24. 24.
    Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781CrossRefGoogle Scholar
  25. 25.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  26. 26.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  27. 27.
    Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135CrossRefGoogle Scholar
  28. 28.
    Li QZ, Li R, Guo P, Li H, Li WZ, Cheng JB (2012) Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS–HOX and SeCSe–HOX (X=Cl and Br) complexes. Comput Theor Chem 980:56–61CrossRefGoogle Scholar
  29. 29.
    Esrafili MD, Vakili M (2014) Cooperativity effects between σ-hole interactions: a theoretical evidence for mutual influence between chalcogen bond and halogen bond interactions in F2S···NCX···NCY complexes (X = F, Cl, Br, I; Y=H, F, OH). Mol Phys 112:2746–2752CrossRefGoogle Scholar
  30. 30.
    Esrafili MD, Mohammadian-Sabet F (2015) Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model 21:65CrossRefGoogle Scholar
  31. 31.
    Iwaoka M, Takemoto S, Tomoda S (2002) Statistical and theoretical investigations on the directionality of nonbonded S···O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 124:10613–10620CrossRefGoogle Scholar
  32. 32.
    Tauer TP, Derrick ME, Sherrill CD (2005) Estimates of the ab initio limit for sulfur–π interactions: the H2S–benzene dimer. J Phys Chem A 105:191–196CrossRefGoogle Scholar
  33. 33.
    Alkorta I, Blanco F, Elguero J (2009) A computational study of the cooperativity in clusters of interhalogen derivatives. Struct Chem 20:63–71CrossRefGoogle Scholar
  34. 34.
    Esrafili MD, Vakili M, Solimannejad M (2014) Cooperative effects in pnicogen bonding: (PH2F)2−7 and (PH2Cl)2−7 clusters. Chem Phys Lett 609:37–41CrossRefGoogle Scholar
  35. 35.
    Grabowski SJ (2013) Cooperativity of hydrogen and halogen bond interactions. Theor Chem Acc 132:1347CrossRefGoogle Scholar
  36. 36.
    Guo X, Liu Y, Li Q, Li W, Cheng J (2014) Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X=Se and Te). Chem Phys Lett 620:7–12CrossRefGoogle Scholar
  37. 37.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  38. 38.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  39. 39.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  40. 40.
    Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691CrossRefGoogle Scholar
  41. 41.
    Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, New YorkGoogle Scholar
  42. 42.
    Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559CrossRefGoogle Scholar
  43. 43.
    Li Q, Hui Q, Li R, Liu X, Li W, Cheng J (2012) Prediction and characterization of a chalcogen–hydride interaction with metal hybrids as an electron donor in F2CS–HM and F2CSe–HM (M=Li, Na, BeH, MgH, MgCH3) complexes. Phys Chem Chem Phys 14:3025–3030CrossRefGoogle Scholar
  44. 44.
    Esrafili MD, Behzadi H (2013) A comparative study on carbon, boron–nitride, boron–phosphide and silicon–carbide nanotubes based on surface electrostatic potentials and average local ionization energies. J Mol Model 19:2375–2382CrossRefGoogle Scholar
  45. 45.
    Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M=C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739CrossRefGoogle Scholar
  46. 46.
    Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci 5:590–596CrossRefGoogle Scholar
  47. 47.
    Varadwaj A, Varadwaj PR, Jin B (2015) Fluorines in tetrafluoromethane as halogen bond donors: revisiting address the nature of the fluorine’s σhole. Int J Quantum Chem 115:453–470CrossRefGoogle Scholar
  48. 48.
    Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451CrossRefGoogle Scholar
  49. 49.
    Kozuch S, Martin ML (2013) Halogen bonds: benchmarks and theoretical analysis. J Chem Theory Comput 9:1918–1931CrossRefGoogle Scholar
  50. 50.
    Koch U, Popelier PLA (1995) Characterization of C–H···O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  51. 51.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  52. 52.
    Esrafili MD, Mahdavinia G, Javaheri M, Sobhi HR (2014) A theoretical study of substitution effects on halogen–π interactions. Mol Phys 112:1160–1166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory of Theoretical Chemistry, Department of ChemistryUniversity of MaraghehMaraghehIran

Personalised recommendations