Structural Chemistry

, Volume 26, Issue 3, pp 639–645 | Cite as

The influence of halogen bonds on tautomerism: the case of 3-mercapto-1,2-azoles (pyrazoles, isoxazoles, isothiazoles)

  • Marta Marín-Luna
  • Ibon Alkorta
  • José Elguero
Original Research


DFT calculations at the B3LYP/6-311++G(d,p) computational level have been carried out on three tautomeric pairs of 3-mercapto-1,2-azoles (pyrazoles, isoxazoles, and isothiazoles) to study the effect of halogen bonds (XBs) on the position of the equilibrium. As halogen bond donors, we have selected Br2, Cl2, BrCl, ClF and BrF and compare them with HF as a hydrogen bond donor. Several linear relationships were found between binding energies of different halogen bond donors. The main conclusion of this study is that the XB inverts the tautomeric equilibrium while an HB does not.


Tautomerism Halogen bonds Molecular electrostatic potentials Binding energies Stabilizing charge-transfer energies 



This work has been supported by the Spanish Ministerio de Economía y Competitividad (CTQ2012-35513-C02-02) and Comunidad Autónoma de Madrid (S2013/MIT-2841, Fotocarbon). Computer, storage, and other resources from the CTI (CSIC) are gratefully acknowledged. One of us (M.M.-L.) benefits from a contract from the Ministerio de Economía y Competitividad.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11224_2015_581_MOESM1_ESM.doc (7.2 mb)
Supplementary material 1 (DOC 7348 kb)


  1. 1.
    Elguero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Academic Press, New York, NYGoogle Scholar
  2. 2.
    Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000) Adv Heterocycl Chem 76:157–323CrossRefGoogle Scholar
  3. 3.
    O’Connell MJ, Ramsay CG, Steel PJ (1985) Aust J Chem 38:401–409CrossRefGoogle Scholar
  4. 4.
    Kyrychenko A, Stepanenko Y, Waluk J (2000) J Phys Chem A 104:9542–9555CrossRefGoogle Scholar
  5. 5.
    Alkorta I, Elguero J (2002) J Org Chem 67:1515–1519CrossRefGoogle Scholar
  6. 6.
    Alkorta I, Elguero J (2009) How aromaticity affects the chemical and physicochemical properties of heterocycles: a computational approach. In: Krygowski TM, Cyránski MK (eds) Aromaticity in heterocyclic compounds, Topics in Heterocyclic Chemistry (Series Ed Gupta RR), vol 19. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  7. 7.
    Nagy PI (2014) Int J Mol Sci 15:19562–19633CrossRefGoogle Scholar
  8. 8.
    Metrangolo P, Resnati G (2001) Chem Eur J 7:2511–2519CrossRefGoogle Scholar
  9. 9.
    Legon AC (2008) Struct Bond 126:17–64CrossRefGoogle Scholar
  10. 10.
    Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) J Phys Chem A 112:10856–10863CrossRefGoogle Scholar
  11. 11.
    El-Sheshtawy HS, Salman HMA, El-Kemary M (2015) Spectrochim Acta Part A 137:442–449CrossRefGoogle Scholar
  12. 12.
    Auffinger P, Hays FA, Ho PS (2004) PNAS 101:16789–16794CrossRefGoogle Scholar
  13. 13.
    Katritzky AR, Hall CD, El-Gendy BEM, Draghici B (2010) J Comput Aided Mol Des 24:475–484CrossRefGoogle Scholar
  14. 14.
    Scholfield MR, Vander Zanden CM, Carter M, Ho PS (2013) Protein Sci 22:139–152CrossRefGoogle Scholar
  15. 15.
    Alkorta I, Rozas I, Elguero J (1998) J Phys Chem A 102:9278–9285CrossRefGoogle Scholar
  16. 16.
    Alkorta I, Blanco F, Elguero J (2009) Struct Chem 20:63–71CrossRefGoogle Scholar
  17. 17.
    Arriau J, Elguero J (1981) An Quim 77:105–111Google Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KitaoO, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, WallingfordGoogle Scholar
  19. 19.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York, NYGoogle Scholar
  20. 20.
    Bartolotti LJ, Fluchichk K (1996) An introduction to density functional theory. In: Lipkowitz KB, Boyds DB (eds) Reviews in computational chemistry, vol 7. VCH, New York, NYGoogle Scholar
  21. 21.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980CrossRefGoogle Scholar
  22. 22.
    Ziegler T (1991) Chem Rev 91:651–667CrossRefGoogle Scholar
  23. 23.
    Tian L, Feiwu C (2012) J Comp Chem 33:580–592CrossRefGoogle Scholar
  24. 24.
    Jmol: An open-source java viewer for chemical structures in 3D, version 130. http://www.jmolorg/. Accessed 26 Sept 2013
  25. 25.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  26. 26.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO-6; Theoretical Chemistry Institute. University of Wisconsin, Madisn, WIGoogle Scholar
  27. 27.
    Popelier PL (2000) Atoms in molecules: an introduction. Prentice Hall, LondonCrossRefGoogle Scholar
  28. 28.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Keith TA (2013) AIMAll (Version 13.10.19) TK Gristmill Software, Overland Park KS, USA. Accessed 4 July 2013
  30. 30.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  31. 31.
    Kalescky R, Zou W, Kraka E, Cremer D (2014) J Phys Chem A 118:1948–1963CrossRefGoogle Scholar
  32. 32.
    Knop O, Boyd RJ, Choi SC (1988) J Am Chem Soc 110:7299–7301CrossRefGoogle Scholar
  33. 33.
    Alkorta I, Elguero J (2004) Struct Chem 15:117–120CrossRefGoogle Scholar
  34. 34.
    Alkorta I, Solimannejad M, Provasi P, Elguero J (2007) J Phys Chem A 111:7154–7161CrossRefGoogle Scholar
  35. 35.
    Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem Eur J 16:2442–2452CrossRefGoogle Scholar
  36. 36.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  37. 37.
    Antonov L (ed) (2014) Tautomerism methods and theories. Wiley-VCH, WeinheimGoogle Scholar
  38. 38.
    Lipkowitz KB, Boyd DB (eds) (1991) Reviews in computational chemistry, vol 2. Wiley-VCH, New York, NYGoogle Scholar
  39. 39.
    Katritzky AR, Hall CD, El-Gendy BEDM, Draghici B (2010) J Comput Aided Mol Des 24:475–484CrossRefGoogle Scholar
  40. 40.
    Metrangolo P, Resnati G (eds) (2008) Halogen bonding, fundamentals and applications, structure and bonding, vol 126. Springer, Berlin HeidelbergGoogle Scholar
  41. 41.
    Scholfield MR, Vander Zanden CM, Carter M, Ho PS (2013) Protein Sci 22:139–152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marta Marín-Luna
    • 1
    • 2
  • Ibon Alkorta
    • 1
  • José Elguero
    • 1
  1. 1.Instituto de Química Médica (CSIC)MadridSpain
  2. 2.MurciaSpain

Personalised recommendations