Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Theoretical insight into sulfur–aromatic interactions with extension to D2 receptor activation mechanism

  • 379 Accesses

  • 9 Citations

Abstract

Contacts between aromatic rings and sulfur-containing amino acids are frequent in proteins. However, little is known about the nature of their interactions particularly if substituents are present on aromatic ring. In this paper, DFT quantum chemical calculations were used to study substituted benzenes in complex with hydrogen sulfide (H2S), methanethiol (CH3SH), and (Methylsulfanyl)methane (CH3SCH3). It was found that SH···π interaction is more stabilizing than the S···π interaction in the case of benzene, but this is changed with increasing electronegativity of the substituent on benzene ring. Although the change of energy of SH···π and S···π interaction follows the conventional model of substituent effect, where S···π interactions are maximized and SH···π interactions are diminished with electron-withdrawing substituent on benzene as a result of changes in the aryl π-system, it was found that it is mainly a consequence of direct electrostatic interaction between substituent and the sulfur-containing molecule. We also investigated the model system of Cys···Trp interaction, adjacent to a cluster of aromatic amino acids, in proteins, using explicit membrane molecular dynamics simulations results of D3 dopamine receptor crystal structure as starting point. It was found that fluorination in aromatic cluster enhances the Cys···Trp interaction. The effect is maximized when transferred through the rest of aromatic system suggesting possible explanation for frequent contacts between sulfur-containing and aromatic amino acids in proteins and their effects on protein folding and stabilization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Morgan RS, Tatsch CE, Gushard RH, McAdon J, Warme PK (1978) Int J Pept Prot Res 11:209–217

  2. 2.

    Bodner BL, Jackman LM, Morgan RS (1980) Biochem Biophys Res Commun 94:807–813

  3. 3.

    Pal D, Chakrabarti P (2001) J Biomol Struct Dyn 19:115–128

  4. 4.

    Cordomi A, Gomez-Tamayo JC, Gigoux V, Fourmy D (2013) Trends Pharmacol Sci 34(6):320–331

  5. 5.

    Duan G, Smith VH Jr, Weaver DF (2001) Mol Phys 19:1689–1699

  6. 6.

    Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42(11):1210–1250

  7. 7.

    Tatko CD, Waters ML (2004) Protein Sci 13(9):2515–2522

  8. 8.

    Tauer TP, Derrick ME, Sherrill CD (2005) J Phys Chem A 109:191–196

  9. 9.

    Yan S, Lee SJ, Kang S, Choi KH, Rhee SK, Lee JY (2007) Bull Korean Chem Soc 28(6):959–964

  10. 10.

    Ringer AL, Senenko A, Sherrill CD (2007) Protein Sci 16:2216–2223

  11. 11.

    Wheeler SE (2013) Acc Chem Res 46:1029–1038

  12. 12.

    Wheeler SE, Houk KN (2008) J Am Chem Soc 130:10854–10855

  13. 13.

    Valley CC, Cembran A, Perlmutter JD, Lewis AK, Labello NP, Gao J, Sachs JN (2012) J Biol Chem 287(42):34979–34991

  14. 14.

    Daeffler KNM, Laster HA, Dougherty DA (2012) J Am Chem Soc 134:14890–14896

  15. 15.

    Grimme S (2006) J Comput Chem 27:1787–1799

  16. 16.

    Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

  17. 17.

    Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

  18. 18.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford CT

  19. 19.

    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

  20. 20.

    Chien EYT, Liu W, Zhao Q, Katritch V, Won Han G, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330(6007):1091–1095

  21. 21.

    Humphrey W, Dalke A, Schulten K (1996) J. Mol Graph 14:33–38

  22. 22.

    MacKerell AD Jr, Feig M, Brooks CL (2004) J Comput Chem 25:1400–1415

  23. 23.

    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph- McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Wiorkiewicz-Kuczera J, Watanabe M, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 102:3586–3616

  24. 24.

    Feller SE, Gawrisch G, MacKerell AD Jr (2002) J Am Chem Soc 124:318–326

  25. 25.

    Feller S, MacKerell AD Jr (2000) J Phys Chem B 104:7510–7515

  26. 26.

    PARADOX cluster at the Scientific Computing Laboratory of the Institute of Physics Belgrade, supported in part by the Serbian Ministry of Education and Science under project No. ON171017, and by the European Commission under FP7 projects HP-SEE, PRACE-1IP, PRACE-2IP, EGI-InSPIRE

  27. 27.

    Origin (OriginLab, Northampton, MA). http://www.originlab.com/index.aspx?go=Company&pid=1130

  28. 28.

    Accelrys Software Inc. (2007) Discovery Studio Viewer, Release 3.5. Accelrys Software Inc., San Diego. http://accelrys.com/products/discovery-studio/

  29. 29.

    Persistence of Vision Pty. Ltd. (2004) Persistence of Vision Raytracer (Version 3.6) [Computer software]. http://www.povray.org/documentation/view/3.6.0/203/. Accesed 2 Dec 2014

  30. 30.

    Adobe Photoshop 7 (2002) Adobe Systems Inc. http://www.adobe.com/products/photoshopfamily.html. Accesed 2 Dec 2014

  31. 31.

    Dennington Roy, Keith Todd, Millam John (2009) GaussView, version 5. Semichem Inc., Shawnee Mission, KS

  32. 32.

    Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley-Interscience, New York

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia (Grant No. OI172032).

Author information

Correspondence to Milan Senćanski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senćanski, M., Došen-Mićović, L., Šukalović, V. et al. Theoretical insight into sulfur–aromatic interactions with extension to D2 receptor activation mechanism. Struct Chem 26, 1139–1149 (2015). https://doi.org/10.1007/s11224-015-0574-z

Download citation

Keywords

  • Sulfur–pi interactions
  • DFT calculations
  • Molecular dynamics
  • Dopamine D2 receptor